cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A224915 a(n) = Sum_{k=0..n} n XOR k where XOR is the bitwise logical exclusive-or operator.

Original entry on oeis.org

0, 1, 5, 6, 22, 23, 27, 28, 92, 93, 97, 98, 114, 115, 119, 120, 376, 377, 381, 382, 398, 399, 403, 404, 468, 469, 473, 474, 490, 491, 495, 496, 1520, 1521, 1525, 1526, 1542, 1543, 1547, 1548, 1612, 1613, 1617, 1618, 1634, 1635, 1639, 1640, 1896, 1897, 1901, 1902, 1918
Offset: 0

Views

Author

Alex Ratushnyak, Apr 19 2013

Keywords

Examples

			a(2) = (0 xor 2) + (1 xor 2) = 2 + 3 = 5.
		

Crossrefs

Cf. A001196 (bit doubling).
Row sums of A051933.
Other sums: A222423 (AND), A350093 (OR), A265736 (IMPL), A350094 (CNIMPL), A004125 (mod).

Programs

  • Maple
    read("transforms"):
    A051933 := proc(n,k)
        XORnos(n,k) ;
    end proc:
    A224915 := proc(n)
        add(A051933(n,k),k=0..n) ;
    end proc: # R. J. Mathar, Apr 26 2013
    # second Maple program:
    with(MmaTranslator[Mma]):
    seq(add(BitXor(n,i),i=0..n),n=0..60); # Ridouane Oudra, Dec 09 2020
  • Mathematica
    Array[Sum[BitXor[#, k], {k, 0, #}] &, 53, 0] (* Michael De Vlieger, Dec 09 2020 *)
  • PARI
    a(n) = sum(k=0, n, bitxor(n, k)); \\ Michel Marcus, Jun 08 2019
    
  • PARI
    a(n) = (3*fromdigits(binary(n),4) - n) >>1; \\ Kevin Ryde, Dec 17 2021
  • Python
    for n in range(59):
        s = 0
        for k in range(n):  s += n ^ k
        print(s, end=',')
    
  • Python
    def A224915(n): return 3*int(bin(n)[2:],4)-n>>1 # Chai Wah Wu, Aug 21 2023
    

Formula

a(n) = Sum_{j=1..n} 4^(v_2(j)), where v_2(j) is the exponent of highest power of 2 dividing j. - Ridouane Oudra, Jun 08 2019
a(n) = n + 3*Sum_{j=1..floor(log_2(n))} 4^(j-1)*floor(n/2^j), for n>=1. - Ridouane Oudra, Dec 09 2020
From Kevin Ryde, Dec 17 2021: (Start)
a(2*n+b) = 4*a(n) + n + b where b = 0 or 1.
a(n) = (A001196(n) - n)/2.
a(n) = A350093(n) - A222423(n), being XOR = OR - AND.
(End)

A338086 Duplicate the ternary digits of n, so each 0, 1 or 2 becomes 00, 11 or 22 respectively.

Original entry on oeis.org

0, 4, 8, 36, 40, 44, 72, 76, 80, 324, 328, 332, 360, 364, 368, 396, 400, 404, 648, 652, 656, 684, 688, 692, 720, 724, 728, 2916, 2920, 2924, 2952, 2956, 2960, 2988, 2992, 2996, 3240, 3244, 3248, 3276, 3280, 3284, 3312, 3316, 3320, 3564, 3568, 3572, 3600, 3604
Offset: 0

Views

Author

Kevin Ryde, Oct 09 2020

Keywords

Comments

Also, numbers whose ternary digit runs are all even lengths (including 0 reckoned as no digits at all). Also, change ternary digits 0,1,2 to base 9 digits 0,4,8, and hence numbers which can be written in base 9 using only digits 0,4,8.
Digit duplication 00,11,22 can be compared to A037314 which is 0 above each so 00,01,02, or A208665 which is 0 below each so 00,10,20. Duplication is the sum of these, or any one is a suitable multiple of another (*3, *4, etc).
This sequence is the points on the X=Y diagonal of the ternary Z-order curve (see example table in A163328). The Z-order curve takes a point number p and splits its ternary digits alternately to X and Y coordinates so X(p) = A163325(p) and Y(p) = A163326(p). Duplicate digits in a(n) are the diagonal X(a(n)) = Y(a(n)) = n.

Examples

			n=73 is ternary 2201 which duplicates to 22220011 ternary = 8804 base 9 = 6484 decimal.
		

Crossrefs

Cf. A020331 (ternary concatenation).
Digit duplication in other bases: A001196, A338754.

Programs

  • PARI
    a(n) = fromdigits(digits(n,3),9)<<2;
    
  • Python
    from gmpy2 import digits
    def A338086(n): return int(''.join(d*2 for d in digits(n,3)),3) # Chai Wah Wu, May 07 2022

Formula

a(n) = A037314(n) + A208665(n) = 4*A037314(n) = (4/3)*A208665(n).
a(n) = 4*Sum_{i=0..k} d[i]*9^i where the ternary expansion of n is n = Sum_{i=0..k} d[i]*3^i with digits d[i]=0,1,2.

A097252 Numbers whose set of base 6 digits is {0,5}.

Original entry on oeis.org

0, 5, 30, 35, 180, 185, 210, 215, 1080, 1085, 1110, 1115, 1260, 1265, 1290, 1295, 6480, 6485, 6510, 6515, 6660, 6665, 6690, 6695, 7560, 7565, 7590, 7595, 7740, 7745, 7770, 7775, 38880, 38885, 38910, 38915, 39060, 39065, 39090, 39095, 39960, 39965
Offset: 0

Views

Author

Ray Chandler, Aug 03 2004

Keywords

Comments

n such that there exists a permutation p_1, ..., p_n of 1, ..., n such that i + p_i is a power of 6 for every i.

Crossrefs

Programs

  • Magma
    [n: n in [0..40000] | Set(IntegerToSequence(n, 6)) subset {0, 5}]; // Vincenzo Librandi, May 25 2012
    
  • Mathematica
    fQ[n_]:=Union@Join[{0,5},IntegerDigits[n,6]]=={0,5};Select[Range[0,40000],fQ] (* Vincenzo Librandi, May 25 2012 *)
    FromDigits[#,6]&/@Tuples[{ 0,5},6] (* Harvey P. Dale, Aug 15 2021 *)
  • Python
    def A079252(n): return 5*int(bin(n)[2:],6) # Chai Wah Wu, Apr 04 2025

Formula

a(n) = 5*A033043(n).
a(2n) = 6*a(n), a(2n+1) = a(2n)+5.

A097254 Numbers whose set of base 8 digits is {0,7}.

Original entry on oeis.org

0, 7, 56, 63, 448, 455, 504, 511, 3584, 3591, 3640, 3647, 4032, 4039, 4088, 4095, 28672, 28679, 28728, 28735, 29120, 29127, 29176, 29183, 32256, 32263, 32312, 32319, 32704, 32711, 32760, 32767, 229376, 229383, 229432, 229439, 229824
Offset: 1

Views

Author

Ray Chandler, Aug 03 2004

Keywords

Comments

n such that there exists a permutation p_1, ..., p_n of 1, ..., n such that i + p_i is a power of 8 for every i.

Crossrefs

Programs

  • Magma
    [n: n in [0..250000] | Set(IntegerToSequence(n, 8)) subset {0, 7}]; // Vincenzo Librandi, May 25 2012
    
  • Mathematica
    fQ[n_]:=Union@Join[{0,7},IntegerDigits[n,8]]=={0,7};Select[Range[0,300000],fQ] (* Vincenzo Librandi, May 25 2012 *)
    FromDigits[#,8]&/@Tuples[{0,7},6] (* Harvey P. Dale, Aug 10 2021 *)
  • Maxima
    a[1]:0$ a[n]:=8*a[floor((n+1)/2)]+7*(1+(-1)^n)/2$ makelist(a[n], n, 1, 37); /* Bruno Berselli, May 25 2012 */
    
  • PARI
    a(n) = 7*fromdigits(binary(n-1), 8) \\ Rémy Sigrist, Dec 06 2018

Formula

a(n) = 7*A033045(n-1).
a(2n-1) = 8*a(n), a(2n) = 8*a(n)+7.

A004468 a(n) = Nim product 3 * n.

Original entry on oeis.org

0, 3, 1, 2, 12, 15, 13, 14, 4, 7, 5, 6, 8, 11, 9, 10, 48, 51, 49, 50, 60, 63, 61, 62, 52, 55, 53, 54, 56, 59, 57, 58, 16, 19, 17, 18, 28, 31, 29, 30, 20, 23, 21, 22, 24, 27, 25, 26, 32, 35, 33, 34, 44, 47, 45, 46, 36, 39, 37, 38, 40, 43, 41, 42, 192, 195, 193, 194, 204, 207, 205
Offset: 0

Views

Author

Keywords

Comments

From Jianing Song, Aug 10 2022: (Start)
Write n in quaternary (base 4), then replace each 1,2,3 by 3,1,2.
This is a permutation of the natural numbers; A006015 is the inverse permutation (since the nim product of 2 and 3 is 1). (End)

References

  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Crossrefs

Row 3 of array in A051775.

Programs

  • Maple
    read("transforms") ;
    # insert Maple procedures nimprodP2() and A051775() of the b-file in A051775 here.
    A004468 := proc(n)
            A051775(3,n) ;
    end proc:
    L := [seq(A004468(n),n=0..1000)] ; # R. J. Mathar, May 28 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 0,
          a(iquo(n, 4, 'r'))*4+[0, 3, 1, 2][r+1])
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 25 2022
  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, {q, r} = QuotientRemainder[n, 4]; a[q]*4 + {0, 3, 1, 2}[[r + 1]]];
    Table[a[n], {n, 0, 70}] (* Jean-François Alcover, May 20 2022, after Alois P. Heinz *)
  • PARI
    a(n) = my(v=digits(n, 4), w=[0,3,1,2]); for(i=1, #v, v[i] = w[v[i]+1]); fromdigits(v, 4) \\ Jianing Song, Aug 10 2022
    
  • Python
    def a(n, D=[0, 3, 1, 2]):
        r, k = 0, 0
        while n>0: r+=D[n%4]*4**k; n//=4; k+=1
        return r
    # Onur Ozkan, Mar 07 2023

Formula

a(n) = A051775(3,n).
From Jianing Song, Aug 10 2022: (Start)
a(n) = 3*n if n has only digits 0 or 1 in quaternary (n is in A000695). Otherwise, a(n) < 3*n.
a(n) = n/2 if n has only digits 0 or 2 in quaternary (n is in A062880). Otherwise, a(n) > n/2.
a(n) = 2*n/3 if and only if n has only digits 0 or 3 in quaternary (n is in A001196). Proof: let n = Sum_i d_i*4^i, d(i) = 0,1,2,3. Write A = Sum_{d_i=1} 4^i, B = Sum_{d_i=2} 4^i, then a(n) = 2*n/3 if and only if 3*A + B = 2/3*(A + 2*B), or B = 7*A. If A != 0, then A is of the form (4*s+1)*4^t, but 7*A is not of this form. So the only possible case is A = B = 0, namely n has only digits 0 or 3. (End)

Extensions

More terms from Erich Friedman

A006015 Nim product 2*n.

Original entry on oeis.org

0, 2, 3, 1, 8, 10, 11, 9, 12, 14, 15, 13, 4, 6, 7, 5, 32, 34, 35, 33, 40, 42, 43, 41, 44, 46, 47, 45, 36, 38, 39, 37, 48, 50, 51, 49, 56, 58, 59, 57, 60, 62, 63, 61, 52, 54, 55, 53, 16, 18, 19, 17, 24, 26, 27, 25, 28, 30, 31, 29, 20, 22, 23, 21, 128, 130, 131, 129, 136, 138, 139
Offset: 0

Views

Author

Keywords

Comments

From Jianing Song, Aug 10 2022: (Start)
Write n in quaternary (base 4), then replace each 1,2,3 by 2,3,1.
This is a permutation of the natural numbers; A004468 is the inverse permutation (since the nim product of 2 and 3 is 1). (End)

References

  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 2 of array in A051775.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0,
          a(iquo(n, 4, 'r'))*4+[0, 2, 3, 1][r+1])
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 25 2022
  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, {q, r} = QuotientRemainder[n, 4]; a[q]*4 + {0, 2, 3, 1}[[r + 1]]];
    Table[a[n], {n, 0, 70}] (* Jean-François Alcover, May 20 2022, after Alois P. Heinz *)
  • PARI
    a(n) = my(v=digits(n, 4), w=[0,2,3,1]); for(i=1, #v, v[i] = w[v[i]+1]); fromdigits(v, 4) \\ Jianing Song, Aug 10 2022
    
  • Python
    def a(n, D=[0, 2, 3, 1]):
        r, k = 0, 0
        while n>0: r+=D[n%4]*4**k; n//=4; k+=1
        return r
    # Onur Ozkan, Mar 07 2023

Formula

From Jianing Song, Aug 10 2022: (Start)
a(n) = A051775(2,n).
a(n) = 2*n if n has only digits 0 or 1 in quaternary (n is in A000695). Otherwise, a(n) < 2*n.
a(n) = n/3 if n has only digits 0 or 3 in quaternary (n is in A001196). Otherwise, a(n) > n/3.
a(n) = 3*n/2 if and only if n has only digits 0 or 2 in quaternary (n is in A062880). Proof: let n = Sum_i d_i*4^i, d(i) = 0,1,2,3. Write A = Sum_{d_i=1} 4^i, B = Sum_{d_i=3} 4^i, then a(n) = 3*n/2 if and only if 2*A + B = 3/2*(A + 3*B), or A = 7*B. If B != 0, then B is of the form (4*s+1)*4^t, but 7*B is not of this form. So the only possible case is A = B = 0, namely n has only digits 0 or 2. (End)

Extensions

More terms from Erich Friedman.

A350093 a(n) = Sum_{k=0..n} n OR k where OR is the bitwise logical OR operator (A003986).

Original entry on oeis.org

0, 2, 7, 12, 26, 34, 45, 56, 100, 114, 131, 148, 174, 194, 217, 240, 392, 418, 447, 476, 514, 546, 581, 616, 684, 722, 763, 804, 854, 898, 945, 992, 1552, 1602, 1655, 1708, 1770, 1826, 1885, 1944, 2036, 2098, 2163, 2228, 2302, 2370, 2441, 2512, 2712, 2786, 2863
Offset: 0

Views

Author

Kevin Ryde, Dec 14 2021

Keywords

Comments

The effect of n OR k is to force a 1-bit at all bit positions where n has a 1-bit, which means n*(n+1) in the sum. Bits of k where n has a 0-bit are NOT(n) AND k = n CNIMPL k so that a(n) = A350094(n) + n*(n+1).

Crossrefs

Cf. A003986 (bitwise OR), A001196 (bit doubling).
Row sums of A080098.
Other sums: A222423 (AND), A224915 (XOR), A265736 (IMPL), A350094 (CNIMPL).

Programs

  • PARI
    a(n) = (3*(n^2 + fromdigits(binary(n),4)) + 2*n) >> 2;

Formula

a(n) = ((3*n+2)*n + A001196(n)) / 4.
a(2*n) = 4*a(n) - n.
a(2*n+1) = 4*a(n) + 2*n + 2.
a(n) = A222423(n) + A224915(n), being OR = AND + XOR.

A371442 For any positive integer n with binary digits (b_1, ..., b_w) (where b_1 = 1), the binary digits of a(n) are (b_1, b_3, ..., b_{2*ceiling(w/2)-1}); a(0) = 0.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 3, 3, 4, 5, 4, 5, 6, 7, 6, 7, 4, 5, 4, 5, 6, 7, 6, 7, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7, 8, 9, 8, 9, 10, 11, 10, 11, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13, 12
Offset: 0

Views

Author

Rémy Sigrist, Mar 24 2024

Keywords

Comments

In other words, we keep odd-indexed bits.
For any v > 0, the value v appears A003945(A070939(v)) times in the sequence.

Examples

			The first terms, in decimal and in binary, are:
  n   a(n)  bin(n)  bin(a(n))
  --  ----  ------  ---------
   0     0       0          0
   1     1       1          1
   2     1      10          1
   3     1      11          1
   4     2     100         10
   5     3     101         11
   6     2     110         10
   7     3     111         11
   8     2    1000         10
   9     2    1001         10
  10     3    1010         11
  11     3    1011         11
  12     2    1100         10
  13     2    1101         10
  14     3    1110         11
  15     3    1111         11
		

Crossrefs

See A371459 for the sequence related to even-indexed bits.
See A059905 and A063694 for similar sequences.

Programs

  • Mathematica
    A371442[n_] := FromDigits[IntegerDigits[n, 2][[1;;-1;;2]], 2];
    Array[A371442, 100, 0] (* Paolo Xausa, Mar 28 2024 *)
  • PARI
    a(n) = { my (b = binary(n)); fromdigits(vector(ceil(#b/2), k, b[2*k-1]), 2); }
    
  • Python
    def a(n): return int(bin(n)[::2], 2)

Formula

a(A000695(n)) = n.
a(A001196(n)) = n.
a(A165199(n)) = a(n).

A097261 Numbers whose set of base 15 digits is {0,E}, where E base 15 = 14 base 10.

Original entry on oeis.org

0, 14, 210, 224, 3150, 3164, 3360, 3374, 47250, 47264, 47460, 47474, 50400, 50414, 50610, 50624, 708750, 708764, 708960, 708974, 711900, 711914, 712110, 712124, 756000, 756014, 756210, 756224, 759150, 759164, 759360, 759374, 10631250
Offset: 0

Views

Author

Ray Chandler, Aug 03 2004

Keywords

Comments

n such that there exists a permutation p_1, ..., p_n of 1, ..., n such that i + p_i is a power of 15 for every i.

Crossrefs

Programs

  • Magma
    [n: n in [0..4500000] | Set(IntegerToSequence(n, 15)) subset {0, 14}]; // Vincenzo Librandi, Jun 05 2012
  • Mathematica
    f[n_] := FromDigits[ IntegerDigits[n, 2] /. {1 -> 14}, 15]; Array[f, 33, 0] (* or *)
    FromDigits[#, 15] & /@ Tuples[{0, 14}, 6] (* Harvey P. Dale, Sep 22 2011 *) (* or much slower *)
    fQ[n_] := Union@ Join[{0, 14}, IntegerDigits[n, 15]] == {0, 14}; Select[ Range[0, 10634414 ], fQ] (* Robert G. Wilson v, May 12 2012 *)

Formula

a(n) = 14*A033051(n).
a(2n) = 15*a(n), a(2n+1) = a(2n)+14.

A332205 a(n) is the imaginary part of f(n) defined by f(0) = 0, and f(n+1) = f(n) + g((1+i)^(A065359(n) mod 8)) (where g(z) = z/gcd(Re(z), Im(z)) and i denotes the imaginary unit).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 2, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 7, 7, 8, 9, 9, 10, 9, 9, 8, 7, 7, 8, 7, 7, 6, 5, 4, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 7, 7, 8, 9, 9, 10, 11, 12, 13, 14
Offset: 0

Views

Author

Rémy Sigrist, Feb 07 2020

Keywords

Comments

Looks much like A005536, in particular in respect of its symmetries of scale (compare the scatterplots). - Peter Munn, Jun 21 2021

Crossrefs

Cf. A005536, A007052, A065359, A332204 (real part and additional comments), A332206 (positions of 0's, cf. A001196).

Programs

  • Mathematica
    A065359[0] = 0;
    A065359[n_] := -Total[(-1)^PositionIndex[Reverse[IntegerDigits[n, 2]]][1]];
    g[z_] := z/GCD[Re[z], Im[z]];
    Module[{n = 0}, Im[NestList[# + g[(1+I)^A065359[n++]] &, 0, 100]]] (* Paolo Xausa, Aug 28 2024 *)
  • PARI
    \\ See Links section.

Formula

a(2^(2*k-1)) = A007052(k) for any k >= 0.
a(4^k-m) = a(m) for any k >= 0 and m = 0..4^k.
Previous Showing 11-20 of 46 results. Next