cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 371 results. Next

A132789 Triangle read by rows: T(n,k) = A007318(n-1, k-1) + A001263(n, k) - 1.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 25, 13, 1, 1, 19, 59, 59, 19, 1, 1, 26, 119, 194, 119, 26, 1, 1, 34, 216, 524, 524, 216, 34, 1, 1, 43, 363, 1231, 1833, 1231, 363, 43, 1, 1, 53, 575, 2603, 5417, 5417, 2603, 575, 53, 1, 1, 64, 869, 5069, 14069, 19655, 14069, 5069, 869
Offset: 1

Views

Author

Gary W. Adamson, Aug 30 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  4,   1;
  1,  8,   8,    1;
  1, 13,  25,   13,     1;
  1, 19,  59,   59,    19,     1;
  1, 26, 119,  194,   119,    26,     1;
  1, 34, 216,  524,   524,   216,    34,    1;
  1, 43, 363, 1231,  1833,  1231,   363,   43,   1;
  1, 53, 575, 2603,  5417,  5417,  2603,  575,  53,  1;
  1, 64, 869, 5069, 14069, 19655, 14069, 5069, 869, 64, 1;
  ...
		

Crossrefs

Column k=2 is A034856.
Row sums are A132790.

Programs

  • Mathematica
    << DiscreteMath`Combinatorica`
    t[n_, m_, 0] := Binomial[n, m];
    t[n_, m_, 1] := Binomial[n, m]*Binomial[n + 1, m]/(m + 1);
    t[n_, m_, 2] := Eulerian[1 + n, m];
    t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
  • PARI
    T(n,k)={if(k<=n, binomial(n-1, k-1)*(1 + binomial(n, k-1)/k) - 1, 0)}
    for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Sep 08 2018

Formula

Equals A007318 + A001263 - A000012 as infinite lower triangular matrices.
A symmetrical triangle recursion: let q=4; t(n,m,0)=Binomial[n,m]; t(n,m,1)=Narayana(n,m); t(n,m,2)=Eulerian(n+1,m); t(n,m,q)=t(n,m,g-2)+t(n,m,q-3).
T(n,k) = binomial(n-1, k-1)*(1 + binomial(n, k-1)/k) - 1. - Andrew Howroyd, Sep 08 2018

Extensions

More terms, Mma program and additional comments from Roger L. Bagula, Apr 20 2010
Edited by N. J. A. Sloane, Apr 21 2010 at the suggestion of R. J. Mathar
Name clarified by Andrew Howroyd, Sep 08 2018

A136536 Triangle read by rows: A001263 * A128064 * A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 2, 5, 7, 3, 14, 19, 19, 4, 42, 51, 71, 41, 5, 132, 146, 216, 216, 76, 6, 429, 449, 617, 827, 547, 127, 7, 1430, 1457, 1793, 2675, 2675, 1205, 197, 8, 4862, 4897, 5497, 8017, 10369, 7429, 2389, 289, 9, 16796, 16840, 17830, 23770, 34858, 34858, 18226, 4366, 406, 10
Offset: 1

Views

Author

Gary W. Adamson, Jan 04 2008

Keywords

Comments

Row sums = A001791: (1, 4, 15, 56, 210, 792, ...).
Left column = A000108 starting (1, 2, 5, 14, 42, 132, 429, ...).

Examples

			First few rows of the triangle:
    1;
    2,   2;
    5,   7,   3;
   14,  19,  19,   4;
   42,  51,  71,  41,   5;
  132, 146, 216, 216,  76,   6;
  429, 449, 617, 827, 547, 127,   7;
  ...
		

Crossrefs

Extensions

a(46) = 16796 corrected and two more terms from Georg Fischer, May 31 2023

A137940 Triangle read by rows, antidiagonals of an array formed by A000012 * A001263 (transform).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 7, 1, 1, 2, 5, 13, 11, 1, 1, 2, 5, 14, 31, 16, 1, 1, 2, 5, 14, 41, 66, 22, 1, 1, 2, 5, 14, 42, 116, 127, 29, 1, 1, 2, 5, 14, 42, 131, 302, 225, 37, 1, 1, 2, 5, 14, 42, 132, 407, 715, 373, 46, 1, 1, 2, 5, 14, 42, 132, 428, 1205, 1549, 586, 56, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 24 2008

Keywords

Comments

Rows of the array tend to the Catalan sequence, A000108 starting (1, 2, 5, 14, 42, ...).

Examples

			First few rows of the array:
  1, 1, 1,  1,  1, ...
  1, 2, 4,  7, 11, ...
  1, 2, 5, 13, 31, ...
  1, 2, 5, 14, 41, ...
  1, 2, 5, 14, 42, ...
  ...
First few rows of the triangle:
  1;
  1, 1;
  1, 2, 1;
  1, 2, 4,  1;
  1, 2, 5,  7,  1;
  1, 2, 5, 13, 11,   1;
  1, 2, 5, 14, 31,  16,   1;
  1, 2, 5, 14, 41,  66,  22,   1;
  1, 2, 5, 14, 42, 116, 127,  29,   1;
  1, 2, 5, 14, 42, 131, 302, 225,  37,  1;
  1, 2, 5, 14, 42, 132, 407, 715, 373, 46, 1;
  ...
		

Crossrefs

Formula

Antidiagonals of an array formed by A000012 * A001263(transform), as infinite triangular matrices. A000012 = (1; 1,1; 1,1,1; 1,1,1,1; ...), A001263 = the Narayana triangle.

Extensions

More terms from Alois P. Heinz, Nov 28 2021

A157118 Triangle T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A001263(n*k+1, n-k+1) if k <= n otherwise A001263(n*(n-k)+1, k+1) and T(1, k) = 1, read by rows.

Original entry on oeis.org

2, 1, 1, 1, 6, 1, 1, 27, 27, 1, 1, 88, 672, 88, 1, 1, 225, 9150, 9150, 225, 1, 1, 486, 98385, 395352, 98385, 486, 1, 1, 931, 1126951, 11748681, 11748681, 1126951, 931, 1, 1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1, 1, 2673, 201755880, 16093941435, 32251030119, 32251030119, 16093941435, 201755880, 2673, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 23 2009

Keywords

Examples

			Triangle begins as:
  2;
  1,    1;
  1,    6,        1;
  1,   27,       27,         1;
  1,   88,      672,        88,         1;
  1,  225,     9150,      9150,       225,         1;
  1,  486,    98385,    395352,     98385,       486,        1;
  1,  931,  1126951,  11748681,  11748681,   1126951,      931,    1;
  1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1;
		

Crossrefs

Programs

  • Magma
    A001263:= func< n,k | Binomial(n-1,k-1)*Binomial(n,k)/(n-k+1) >;
    f:= func< n,k | k le n select A001263(n*k+1,n-k+1) else A001263(n*(n-k)+1, k+1) >;
    A157118:= func< n,k | n eq 1 select 1 else f(n,k) + f(n,n-k) >;
    [A157118(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2022
    
  • Mathematica
    A001263[n_, k_]:= Binomial[n-1,k-1]*Binomial[n,k]/(n-k+1);
    f[n_, k_]:= If[k<=n, A001263[n*k+1,n-k+1], A001263[n*(n-k)+1,k+1]];
    T[n_, k_]:= If[n==1, 1, f[n,k] + f[n,n-k]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
  • Sage
    def A001263(n,k): return binomial(n-1,k-1)*binomial(n,k)/(n-k+1)
    def f(n,k): return A001263(n*k+1,n-k+1) if (kA001263(n*(n-k)+1, k+1)
    def A157118(n,k): return 1 if (n==1) else f(n,k) + f(n,n-k)
    flatten([[A157118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 11 2022

Formula

T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A001263(n*k+1, n-k+1) if k <= n otherwise A001263(n*(n-k)+1, k+1) and T(1, k) = 1.
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Jan 11 2022

A178578 Diagonal sums of second binomial transform of the Narayana triangle A001263.

Original entry on oeis.org

1, 3, 10, 34, 118, 417, 1497, 5448, 20063, 74649, 280252, 1060439, 4040413, 15488981, 59701236, 231236830, 899559100, 3513314664, 13770811198, 54152480421, 213585706927, 844723104691, 3349274471386, 13310603555085, 53012829376985, 211560158583657, 845856494229348, 3387782725245302, 13590698721293800, 54604853170818121, 219706932640295523
Offset: 0

Views

Author

Paul Barry, Dec 26 2010

Keywords

Comments

Hankel transform is the (1,-1) Somos-4 sequence A178079.

Crossrefs

Cf. A025254.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 -3*x-x^2 - Sqrt(x^4+2*x^3+7*x^2-6*x+1))/(2*x^3))); // G. C. Greubel, Aug 14 2018
  • Mathematica
    Table[Sum[Sum[Binomial[n-k,j]*Binomial[j,k]*Binomial[j+1,k]*2^(n-k-j)/(k+1),{j,0,n-k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 02 2014 *)
    CoefficientList[Series[(1-3*x-x^2 -Sqrt[x^4+2*x^3+7*x^2-6*x+1])/(2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
  • PARI
    a(n)=sum(k=0,floor(n/2), sum(j=0,n-k,binomial(n-k,j)*binomial(j,k)*binomial(j+1,k)*2^(n-k-j)/(k+1)));
    vector(22,n,a(n-1))
    

Formula

a(n) = A025254(n+2).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(n-k,j)*C(j,k)*C(j+1,k)*2^(n-k-j)/(k+1).
From Vaclav Kotesovec, Mar 02 2014: (Start)
Recurrence: (n+3)*a(n) = 3*(2*n+3)*a(n-1) - 7*n*a(n-2) - (2*n-3)*a(n-3) - (n-3)*a(n-4).
G.f.: (1 - 3*x - x^2 - sqrt(x^4 + 2*x^3 + 7*x^2 - 6*x + 1))/(2*x^3).
a(n) ~ (130-216*r-64*r^2-29*r^3) * sqrt(2*r^3+14*r^2-18*r+4) / (4 * sqrt(Pi) * n^(3/2) * r^n), where r = 1/6*(-3 + sqrt(3*(-11 + (1009 - 24*sqrt(183))^(1/3) + (1009 + 24*sqrt(183))^(1/3))) - sqrt(-66 - 3*(1009 - 24*sqrt(183))^(1/3) - 3*(1009 + 24*sqrt(183))^(1/3) + 216*sqrt(3/(-11 + (1009 - 24*sqrt(183))^(1/3) + (1009 + 24*sqrt(183))^(1/3))))) = 0.23742047190096998... is the root of the equation r^4 + 2*r^3 + 7*r^2 - 6*r + 1 = 0.
(End)

A376001 Numbers that can be written as a Narayana number (A001263) in at least 3 ways.

Original entry on oeis.org

1, 105, 1176, 4950, 5713890
Offset: 1

Views

Author

Pontus von Brömssen, Sep 06 2024

Keywords

Comments

The first 5 terms are triangular numbers.
a(2), ..., a(5) can all be written as a Narayana number in exactly 4 ways.
a(6) > 2*10^35 (if it exists).

Examples

			With T(n,k) = A001263(n,k):
      105 = T( 7,3) = T( 7, 5) = T(  15,2) = T(  15,  14);
     1176 = T( 9,4) = T( 9, 6) = T(  49,2) = T(  49,  48);
     4950 = T(11,4) = T(11, 8) = T( 100,2) = T( 100,  99);
  5713890 = T(92,3) = T(92,90) = T(3381,2) = T(3381,3380).
		

Crossrefs

Programs

  • Python
    from math import isqrt
    from bisect import insort
    from itertools import islice
    def A010054(n):
        return isqrt(m:=8*n+1)**2 == m
    def A376001_generator():
        yield 1
        nkN_list = [(5, 3, 20)] # List of triples (n, k, A001263(n, k)), sorted by the last element.
        while 1:
            N0 = nkN_list[0][2]
            c = 0
            while 1:
                n, k, N = nkN_list[0]
                if N > N0:
                    if c >= 3 or A010054(N0): yield N0
                    break
                central = n==2*k-1
                c += 2-central
                del nkN_list[0]
                insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2])
                if central:
                    insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2])
    def A376001_list(nmax):
        return list(islice(A376001_generator(),nmax))

A095801 Square of Narayana triangle A001263: View A001263 as a lower triangular matrix. Then the square of that matrix is also lower triangular. Sequence gives this lower triangle, read by rows.

Original entry on oeis.org

1, 2, 1, 5, 6, 1, 14, 30, 12, 1, 42, 140, 100, 20, 1, 132, 630, 700, 250, 30, 1, 429, 2772, 4410, 2450, 525, 42, 1, 1430, 12012, 25872, 20580, 6860, 980, 56, 1, 4862, 51480, 144144, 155232, 74088, 16464, 1680, 72, 1, 16796, 218790, 772200, 1081080, 698544
Offset: 1

Views

Author

Gary W. Adamson, Jun 07 2004

Keywords

Comments

The first three columns are A000108 (the Catalan numbers), A002457 and A085374.

Examples

			The first 3 rows are 1; 2, 1; 5, 6, 1; since the first 3 rows of the Narayana triangle in matrix format are M = [1 0 0 / 1 1 0 / 1 3 1]. Then M^2 = [1 0 0 / 2 1 0 / 5 6 1].
Triangle starts:
   1;
   2,   1;
   5,   6,   1;
  14,  30,  12,  1;
  42, 140, 100, 20, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] = Sum[1/(i*k)*(Binomial[i-1, k-1]*Binomial[i, k-1]* Binomial[n-1, i-1]*Binomial[n, i-1]), {i, k, n}];
    Flatten[Table[t[n, k], {n, 1, 10}, {k, 1, n}]][[1;;50]] (* Jean-François Alcover, Jul 21 2011 *)

Formula

T(n, k) = Sum_{i = k..n} A001263(n, i)*A001263(i, k).
T(n, n-1) = n*(n-1).

Extensions

Edited and extended by David Wasserman, Sep 24 2004

A105557 Row sums of triangle A105556, in which column n equals the row sums of A001263^n, which is the n-th matrix power of the Narayana triangle A001263.

Original entry on oeis.org

1, 2, 4, 10, 32, 128, 626, 3681, 25574, 206402, 1908996, 20024149, 236142157, 3106393358, 45265833590, 726249472784, 12761749378320, 244453274012442, 5082582988294164, 114258645210526486, 2767462674168199303
Offset: 0

Views

Author

Paul D. Hanna, Apr 14 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(N=matrix(n+1,n+1,m,j,if(m>=j, binomial(m-1,j-1)*binomial(m,j-1)/j))); sum(k=0,n,sum(j=0,n-k,(N^k)[n-k+1,j+1]))}

A105558 Central terms in even-indexed rows of triangle A105556 and thus equals the n-th row sum of the n-th matrix power of the Narayana triangle A001263.

Original entry on oeis.org

1, 2, 12, 148, 3105, 99156, 4481449, 272312216, 21414443481, 2116193061340, 256712977920256, 37506637787774112, 6496315164318118165, 1316230822119433518312, 308426950979497974254310
Offset: 0

Views

Author

Paul D. Hanna, Apr 14 2005

Keywords

Comments

Each term a(n) is divisible by (n+1) for all n>=0.

Examples

			Terms a(n) divided by (n+1) begin:
1,1,4,37,621,16526,640207,34039027,2379382609,211619306134,...
Contribution from _Paul D. Hanna_, Jan 31 2009: (Start)
G.f.: A(x) = 1 + 2*x + 12*x^2/3 + 148*x^3/18 + 3105*x^4/180 +...+ a(n)*x^n/[n!*(n+1)!/2^n] +...
G.f.: A(x) = d/dx x*F(x) where F(x) = B(x*F(x)) and:
F(x) = 1 + x + 4*x^2/3 + 37*x^3/18 + 621*x^4/180 + 16526*x^5/2700 +...+ A155926(n)*x^n/[n!*(n+1)!/2^n] +...
B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 +...+ x^n/[n!*(n+1)!/2^n] +... (End)
		

Crossrefs

Programs

  • PARI
    a(n)=local(N=matrix(n+1,n+1,m,j,if(m>=j, binomial(m-1,j-1)*binomial(m,j-1)/j))); sum(j=0,n,(N^n)[n+1,j+1])
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    a(n)=local(F=sum(k=0,n,x^k/(k!*(k+1)!/2^k))+x*O(x^n));polcoeff(deriv(serreverse(x/F)),n)*n!*(n+1)!/2^n
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Jan 31 2009

Formula

Contribution from Paul D. Hanna, Jan 31 2009: (Start)
a(n) = (n+1)*A155926(n) for n>=0.
G.f.: A(x) = d/dx x*F(x) where F(x) = B(x*F(x)) and F(x) = Sum_{n>=0} A155926(n)*x^n/[n!*(n+1)!/2^n] with B(x) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n] and A(x) = Sum_{n>=0} a(n)*x^n/[n!*(n+1)!/2^n]. (End)

A112338 Triangle read by rows, generated from A001263.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 12, 14, 1, 1, 5, 22, 57, 42, 1, 1, 6, 35, 148, 303, 132, 1, 1, 7, 51, 305, 1144, 1743, 429, 1, 8, 70, 546, 3105, 9784, 10629, 1430, 1
Offset: 0

Views

Author

Gary W. Adamson, Sep 04 2005

Keywords

Comments

Rows of the array are row sums of n-th powers of the Narayana triangle; e.g., row 1 = A000108: (1, 2, 5, 14, 42, ...); row 2 = row sums of the Narayana triangle squared (A103370): (1, 3, 12, 57, 303, ...), etc.

Examples

			In the array, antidiagonal terms (1, 3, 5, 1) become row 3 of the triangle.
First few rows of the array:
  1, 1,  1,   1,    1,     1, ...
  1, 2,  5,  14,   42,   132, ...
  1, 3, 12,  57,  303,  1743, ...
  1, 4, 22, 148, 1144,  9784, ...
  1, 5, 35, 305, 3105, 35505, ...
First few rows of the triangle:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  5,   1;
  1, 4, 12,  14,   1;
  1, 5, 22,  57,  42,   1;
  1, 6, 35, 148, 303, 132, 1;
		

Crossrefs

Formula

Let M be the infinite lower triangular Narayana triangle (A001263). Perform M^n * [1 0 0 0 ...] getting an array. Take antidiagonals of the array which become rows of the triangle A112338.
Previous Showing 31-40 of 371 results. Next