A132789
Triangle read by rows: T(n,k) = A007318(n-1, k-1) + A001263(n, k) - 1.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 25, 13, 1, 1, 19, 59, 59, 19, 1, 1, 26, 119, 194, 119, 26, 1, 1, 34, 216, 524, 524, 216, 34, 1, 1, 43, 363, 1231, 1833, 1231, 363, 43, 1, 1, 53, 575, 2603, 5417, 5417, 2603, 575, 53, 1, 1, 64, 869, 5069, 14069, 19655, 14069, 5069, 869
Offset: 1
First few rows of the triangle are:
1;
1, 1;
1, 4, 1;
1, 8, 8, 1;
1, 13, 25, 13, 1;
1, 19, 59, 59, 19, 1;
1, 26, 119, 194, 119, 26, 1;
1, 34, 216, 524, 524, 216, 34, 1;
1, 43, 363, 1231, 1833, 1231, 363, 43, 1;
1, 53, 575, 2603, 5417, 5417, 2603, 575, 53, 1;
1, 64, 869, 5069, 14069, 19655, 14069, 5069, 869, 64, 1;
...
-
<< DiscreteMath`Combinatorica`
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Binomial[n, m]*Binomial[n + 1, m]/(m + 1);
t[n_, m_, 2] := Eulerian[1 + n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
-
T(n,k)={if(k<=n, binomial(n-1, k-1)*(1 + binomial(n, k-1)/k) - 1, 0)}
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Sep 08 2018
More terms, Mma program and additional comments from
Roger L. Bagula, Apr 20 2010
A136536
Triangle read by rows: A001263 * A128064 * A000012 as infinite lower triangular matrices.
Original entry on oeis.org
1, 2, 2, 5, 7, 3, 14, 19, 19, 4, 42, 51, 71, 41, 5, 132, 146, 216, 216, 76, 6, 429, 449, 617, 827, 547, 127, 7, 1430, 1457, 1793, 2675, 2675, 1205, 197, 8, 4862, 4897, 5497, 8017, 10369, 7429, 2389, 289, 9, 16796, 16840, 17830, 23770, 34858, 34858, 18226, 4366, 406, 10
Offset: 1
First few rows of the triangle:
1;
2, 2;
5, 7, 3;
14, 19, 19, 4;
42, 51, 71, 41, 5;
132, 146, 216, 216, 76, 6;
429, 449, 617, 827, 547, 127, 7;
...
a(46) = 16796 corrected and two more terms from
Georg Fischer, May 31 2023
A137940
Triangle read by rows, antidiagonals of an array formed by A000012 * A001263 (transform).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 7, 1, 1, 2, 5, 13, 11, 1, 1, 2, 5, 14, 31, 16, 1, 1, 2, 5, 14, 41, 66, 22, 1, 1, 2, 5, 14, 42, 116, 127, 29, 1, 1, 2, 5, 14, 42, 131, 302, 225, 37, 1, 1, 2, 5, 14, 42, 132, 407, 715, 373, 46, 1, 1, 2, 5, 14, 42, 132, 428, 1205, 1549, 586, 56, 1
Offset: 1
First few rows of the array:
1, 1, 1, 1, 1, ...
1, 2, 4, 7, 11, ...
1, 2, 5, 13, 31, ...
1, 2, 5, 14, 41, ...
1, 2, 5, 14, 42, ...
...
First few rows of the triangle:
1;
1, 1;
1, 2, 1;
1, 2, 4, 1;
1, 2, 5, 7, 1;
1, 2, 5, 13, 11, 1;
1, 2, 5, 14, 31, 16, 1;
1, 2, 5, 14, 41, 66, 22, 1;
1, 2, 5, 14, 42, 116, 127, 29, 1;
1, 2, 5, 14, 42, 131, 302, 225, 37, 1;
1, 2, 5, 14, 42, 132, 407, 715, 373, 46, 1;
...
A157118
Triangle T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A001263(n*k+1, n-k+1) if k <= n otherwise A001263(n*(n-k)+1, k+1) and T(1, k) = 1, read by rows.
Original entry on oeis.org
2, 1, 1, 1, 6, 1, 1, 27, 27, 1, 1, 88, 672, 88, 1, 1, 225, 9150, 9150, 225, 1, 1, 486, 98385, 395352, 98385, 486, 1, 1, 931, 1126951, 11748681, 11748681, 1126951, 931, 1, 1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1, 1, 2673, 201755880, 16093941435, 32251030119, 32251030119, 16093941435, 201755880, 2673, 1
Offset: 0
Triangle begins as:
2;
1, 1;
1, 6, 1;
1, 27, 27, 1;
1, 88, 672, 88, 1;
1, 225, 9150, 9150, 225, 1;
1, 486, 98385, 395352, 98385, 486, 1;
1, 931, 1126951, 11748681, 11748681, 1126951, 931, 1;
1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1;
-
A001263:= func< n,k | Binomial(n-1,k-1)*Binomial(n,k)/(n-k+1) >;
f:= func< n,k | k le n select A001263(n*k+1,n-k+1) else A001263(n*(n-k)+1, k+1) >;
A157118:= func< n,k | n eq 1 select 1 else f(n,k) + f(n,n-k) >;
[A157118(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2022
-
A001263[n_, k_]:= Binomial[n-1,k-1]*Binomial[n,k]/(n-k+1);
f[n_, k_]:= If[k<=n, A001263[n*k+1,n-k+1], A001263[n*(n-k)+1,k+1]];
T[n_, k_]:= If[n==1, 1, f[n,k] + f[n,n-k]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
-
def A001263(n,k): return binomial(n-1,k-1)*binomial(n,k)/(n-k+1)
def f(n,k): return A001263(n*k+1,n-k+1) if (kA001263(n*(n-k)+1, k+1)
def A157118(n,k): return 1 if (n==1) else f(n,k) + f(n,n-k)
flatten([[A157118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 11 2022
A178578
Diagonal sums of second binomial transform of the Narayana triangle A001263.
Original entry on oeis.org
1, 3, 10, 34, 118, 417, 1497, 5448, 20063, 74649, 280252, 1060439, 4040413, 15488981, 59701236, 231236830, 899559100, 3513314664, 13770811198, 54152480421, 213585706927, 844723104691, 3349274471386, 13310603555085, 53012829376985, 211560158583657, 845856494229348, 3387782725245302, 13590698721293800, 54604853170818121, 219706932640295523
Offset: 0
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 -3*x-x^2 - Sqrt(x^4+2*x^3+7*x^2-6*x+1))/(2*x^3))); // G. C. Greubel, Aug 14 2018
-
Table[Sum[Sum[Binomial[n-k,j]*Binomial[j,k]*Binomial[j+1,k]*2^(n-k-j)/(k+1),{j,0,n-k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 02 2014 *)
CoefficientList[Series[(1-3*x-x^2 -Sqrt[x^4+2*x^3+7*x^2-6*x+1])/(2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
-
a(n)=sum(k=0,floor(n/2), sum(j=0,n-k,binomial(n-k,j)*binomial(j,k)*binomial(j+1,k)*2^(n-k-j)/(k+1)));
vector(22,n,a(n-1))
A376001
Numbers that can be written as a Narayana number (A001263) in at least 3 ways.
Original entry on oeis.org
1, 105, 1176, 4950, 5713890
Offset: 1
With T(n,k) = A001263(n,k):
105 = T( 7,3) = T( 7, 5) = T( 15,2) = T( 15, 14);
1176 = T( 9,4) = T( 9, 6) = T( 49,2) = T( 49, 48);
4950 = T(11,4) = T(11, 8) = T( 100,2) = T( 100, 99);
5713890 = T(92,3) = T(92,90) = T(3381,2) = T(3381,3380).
-
from math import isqrt
from bisect import insort
from itertools import islice
def A010054(n):
return isqrt(m:=8*n+1)**2 == m
def A376001_generator():
yield 1
nkN_list = [(5, 3, 20)] # List of triples (n, k, A001263(n, k)), sorted by the last element.
while 1:
N0 = nkN_list[0][2]
c = 0
while 1:
n, k, N = nkN_list[0]
if N > N0:
if c >= 3 or A010054(N0): yield N0
break
central = n==2*k-1
c += 2-central
del nkN_list[0]
insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2])
if central:
insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2])
def A376001_list(nmax):
return list(islice(A376001_generator(),nmax))
A095801
Square of Narayana triangle A001263: View A001263 as a lower triangular matrix. Then the square of that matrix is also lower triangular. Sequence gives this lower triangle, read by rows.
Original entry on oeis.org
1, 2, 1, 5, 6, 1, 14, 30, 12, 1, 42, 140, 100, 20, 1, 132, 630, 700, 250, 30, 1, 429, 2772, 4410, 2450, 525, 42, 1, 1430, 12012, 25872, 20580, 6860, 980, 56, 1, 4862, 51480, 144144, 155232, 74088, 16464, 1680, 72, 1, 16796, 218790, 772200, 1081080, 698544
Offset: 1
The first 3 rows are 1; 2, 1; 5, 6, 1; since the first 3 rows of the Narayana triangle in matrix format are M = [1 0 0 / 1 1 0 / 1 3 1]. Then M^2 = [1 0 0 / 2 1 0 / 5 6 1].
Triangle starts:
1;
2, 1;
5, 6, 1;
14, 30, 12, 1;
42, 140, 100, 20, 1;
...
-
t[n_, k_] = Sum[1/(i*k)*(Binomial[i-1, k-1]*Binomial[i, k-1]* Binomial[n-1, i-1]*Binomial[n, i-1]), {i, k, n}];
Flatten[Table[t[n, k], {n, 1, 10}, {k, 1, n}]][[1;;50]] (* Jean-François Alcover, Jul 21 2011 *)
A105557
Row sums of triangle A105556, in which column n equals the row sums of A001263^n, which is the n-th matrix power of the Narayana triangle A001263.
Original entry on oeis.org
1, 2, 4, 10, 32, 128, 626, 3681, 25574, 206402, 1908996, 20024149, 236142157, 3106393358, 45265833590, 726249472784, 12761749378320, 244453274012442, 5082582988294164, 114258645210526486, 2767462674168199303
Offset: 0
-
{a(n)=local(N=matrix(n+1,n+1,m,j,if(m>=j, binomial(m-1,j-1)*binomial(m,j-1)/j))); sum(k=0,n,sum(j=0,n-k,(N^k)[n-k+1,j+1]))}
A105558
Central terms in even-indexed rows of triangle A105556 and thus equals the n-th row sum of the n-th matrix power of the Narayana triangle A001263.
Original entry on oeis.org
1, 2, 12, 148, 3105, 99156, 4481449, 272312216, 21414443481, 2116193061340, 256712977920256, 37506637787774112, 6496315164318118165, 1316230822119433518312, 308426950979497974254310
Offset: 0
Terms a(n) divided by (n+1) begin:
1,1,4,37,621,16526,640207,34039027,2379382609,211619306134,...
Contribution from _Paul D. Hanna_, Jan 31 2009: (Start)
G.f.: A(x) = 1 + 2*x + 12*x^2/3 + 148*x^3/18 + 3105*x^4/180 +...+ a(n)*x^n/[n!*(n+1)!/2^n] +...
G.f.: A(x) = d/dx x*F(x) where F(x) = B(x*F(x)) and:
F(x) = 1 + x + 4*x^2/3 + 37*x^3/18 + 621*x^4/180 + 16526*x^5/2700 +...+ A155926(n)*x^n/[n!*(n+1)!/2^n] +...
B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 +...+ x^n/[n!*(n+1)!/2^n] +... (End)
-
a(n)=local(N=matrix(n+1,n+1,m,j,if(m>=j, binomial(m-1,j-1)*binomial(m,j-1)/j))); sum(j=0,n,(N^n)[n+1,j+1])
for(n=0,20,print1(a(n),", "))
-
a(n)=local(F=sum(k=0,n,x^k/(k!*(k+1)!/2^k))+x*O(x^n));polcoeff(deriv(serreverse(x/F)),n)*n!*(n+1)!/2^n
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Jan 31 2009
A112338
Triangle read by rows, generated from A001263.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 12, 14, 1, 1, 5, 22, 57, 42, 1, 1, 6, 35, 148, 303, 132, 1, 1, 7, 51, 305, 1144, 1743, 429, 1, 8, 70, 546, 3105, 9784, 10629, 1430, 1
Offset: 0
In the array, antidiagonal terms (1, 3, 5, 1) become row 3 of the triangle.
First few rows of the array:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 14, 42, 132, ...
1, 3, 12, 57, 303, 1743, ...
1, 4, 22, 148, 1144, 9784, ...
1, 5, 35, 305, 3105, 35505, ...
First few rows of the triangle:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 12, 14, 1;
1, 5, 22, 57, 42, 1;
1, 6, 35, 148, 303, 132, 1;
Comments