cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A332316 Numbers k such that k and k + 1 have the same value of the norm of the totient function for Gaussian integers (A103224).

Original entry on oeis.org

4, 5, 35, 51, 154, 804, 3596, 6200, 7595, 916538, 1638039, 2794805, 6804035, 24724472, 40128444, 52424787, 69918849, 82954611, 124077316, 160245605, 204215514, 361275551, 371254235, 661831521, 1314759754, 1695554762, 2246110022, 2378746131, 2889320799, 4181707719
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Comments

The corresponding common values A103224(k) = A103224(k+1) are 8, 8, 288, 640, 7200, 139392, 3744000, 5760000, ...

Examples

			4 is a term since norm(phi(4)) = norm(phi(5)) = 8.
		

Crossrefs

Programs

  • Mathematica
    phi[z_] := Module[{f, k, prod}, If[Abs[z]==1, z, f = FactorInteger[z, GaussianIntegers->True]; If[Abs[f[[1, 1]]]==1, k=2; prod=f[[1, 1]], k=1; prod=1]; Do[prod=prod*(f[[i, 1]]-1)f[[i, 1]]^(f[[i, 2]]-1), {i, k, Length[f]}]; prod]]; Select[Range[10^3], Abs[phi[#]]^2 == Abs[phi[# + 1]]^2 &] (* after T. D. Noe at A103222 *)

A333741 Odd numbers k such that phi(k) = phi(k+2), where phi is the Euler totient function (A000010).

Original entry on oeis.org

7, 635, 1015, 2695, 6497, 10307, 12317, 13445, 46205, 77693, 81303, 133787, 134995, 151823, 162925, 180633, 181427, 220113, 288925, 359905, 392819, 404471, 439097, 453167, 485237, 682649, 739023, 840851, 879303, 910195, 988713, 1392317, 1410119, 1434895, 1503347
Offset: 1

Views

Author

Amiram Eldar, Apr 03 2020

Keywords

Comments

The odd terms of A001494. These terms are relatively rare: of the first 10000 terms of A001494 only 63 are odd.

Examples

			7 is a term since phi(7) = phi(9) = 6.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6, 2], EulerPhi[#] == EulerPhi[# + 2] &]
    2#-1&/@SequencePosition[EulerPhi[Range[1,151*10^4,2]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 15 2020 *)

A333874 Numbers k such that A173557(k) = A173557(k+1).

Original entry on oeis.org

1, 168, 194, 350, 1368, 1628, 3705, 5186, 5328, 6929, 7475, 25545, 26047, 26864, 28251, 34936, 37248, 56724, 65675, 81732, 82368, 87308, 87367, 88450, 91539, 132308, 164691, 166624, 244215, 265524, 280818, 281897, 388245, 465651, 501024, 577524, 806895, 859901
Offset: 1

Views

Author

Amiram Eldar, Apr 08 2020

Keywords

Comments

Kim et al. (2019) conjectured that A173557(k) = A173557(k+1) is divisible by 12 for all the terms k > 1.

Examples

			1 is a term since A173557(1) = A173557(2) = 1.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p - 1; u[1] = 1; u[n_] := Times @@ (f @@@ FactorInteger[n]); s = {}; u1 = 1; Do[u2 = u[n]; If[u1 == u2, AppendTo[s, n-1]]; u1 = u2, {n, 2, 10^5}]; s

A333875 Numbers k such that both k and k+1 are squarefree and phi(k) = phi(k+1), where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 194, 3705, 5186, 25545, 388245, 1659585, 2200694, 2521694, 2619705, 3289934, 3794834, 4002405, 5781434, 6245546, 6372794, 8338394, 12352934, 14144954, 16475414, 22632285, 23553705, 37762394, 40588485, 43834754, 44485454, 59603954, 63298785, 76466985, 81591194
Offset: 1

Views

Author

Amiram Eldar, Apr 08 2020

Keywords

Comments

Numbers k such that A000010(k) = A000010(k+1) = A173557(k) = A173557(k+1).

Examples

			1 is a term since 1 and 2 are both squarefree and phi(1) = phi(2) = 1.
		

Crossrefs

Subsequence of A001274.

Programs

  • Mathematica
    s = {}; p1 = 1; Do[p2 = If[SquareFreeQ[n], EulerPhi[n], 0]; If[p2 > 0 && p2 == p1, AppendTo[s, n-1]]; p1 = p2, {n, 2, 10^5}]; s
  • PARI
    for(k=1,10^7, if(issquarefree(k), if(issquarefree(k+1), if(eulerphi(k)==eulerphi(k+1),print1(k,", "))))) \\ Hugo Pfoertner, Apr 08 2020

A349309 Numbers k such that A254926(k) = A254926(k+1).

Original entry on oeis.org

7, 26, 124, 342, 1330, 2196, 12166, 24388, 29790, 79506, 103822, 148876, 205378, 226980, 300762, 357910, 493038, 571786, 1030300, 1092726, 1225042, 2248090, 2685618, 3307948, 3442950, 3869892, 4657462, 5177716, 5735338, 6967870, 7645372, 9393930, 11089566, 11697082
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2021

Keywords

Examples

			7 is a term since A254926(7) = A254926(8) = 7.
		

Crossrefs

Cf. A254926.

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, p^e, p^e - p^(e - 3)]; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^6], s[#] == s[# + 1] &]
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A349309_gen(startvalue=1): # generator of terms >= startvalue
        a = prod(p**e - (p**(e-3) if e >= 3 else 0) for p, e in factorint(max(startvalue,1)).items())
        for k in count(max(startvalue,1)):
            b = prod(p**e - (p**(e-3) if e >= 3 else 0) for p, e in factorint(k+1).items())
            if a == b:
                yield k
            a = b
    A349309_list = list(islice(A349309_gen(),10)) # Chai Wah Wu, Jan 24 2022

A003276 Numbers k such that the multiplicative group of residues prime to k, M_k, is isomorphic to M_{k+1}.

Original entry on oeis.org

1, 3, 15, 104, 495, 975, 22935, 32864, 57584, 131144, 491535, 2539004, 3988424, 6235215, 7378371, 13258575, 17949434, 25637744, 26879684, 29357475, 32235735, 41246864, 48615735, 184611375, 229944855, 257278724, 290849624, 429461864, 550666515, 671054835, 706075095
Offset: 1

Views

Author

Keywords

References

  • K. Miller, Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000. Unpublished, 1972. [Cf. Math. Comp., Vol. 27, p. 447, 1973.]
  • D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 225.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A001274.

Programs

  • PARI
    {my(z=znstar(1));for(n=1,10^10,my(z1=znstar(n+1)); if(z[1]==z1[1]&&z[2]==z1[2],print1(n,", "));z=z1;); } \\ Joerg Arndt, Mar 17 2016
    
  • PARI
    list(lim)=my(v=List(),old=[1,[]]); forfactored(n=2,lim\1+1, my(cur=znstar(n)[1..2]); if(old==cur, listput(v,n[1]-1)); old=cur); Vec(v) \\ Charles R Greathouse IV, Jul 17 2022

Extensions

More terms from David W. Wilson

A063739 Squarefree numbers k such that phi(k) = phi(k+1).

Original entry on oeis.org

1, 3, 15, 194, 255, 2834, 3255, 3705, 5186, 5187, 11715, 22935, 25545, 49215, 49335, 65535, 214334, 256274, 388245, 525986, 568815, 589407, 840255, 936494, 1259642, 1574727, 1659585, 1759874, 1788254, 2123583, 2200694, 2521694, 2619705, 3240614, 3289934
Offset: 1

Views

Author

Jason Earls, Aug 13 2001

Keywords

Crossrefs

Intersection of A005117 and A001274.

Programs

  • Mathematica
    Select[Range[3000000],SquareFreeQ[#]&&EulerPhi[#]==EulerPhi[#+1]&] (* Harvey P. Dale, May 15 2013 *)
  • PARI
    for(n=1,10^7, if(issquarefree(n), if(eulerphi(n)==eulerphi(n+1),print(n))))
    
  • PARI
    { n=0; for (m=1, 10^9, if (eulerphi(m)==eulerphi(m + 1) && issquarefree(m), write("b063739.txt", n++, " ", m); if (n==75, break)) ) } \\ Harry J. Smith, Aug 29 2009

A217773 Numbers n such that tau(n) = tau(n+1) and phi(n) = phi(n+1).

Original entry on oeis.org

104, 3255, 22935, 983775, 1025504, 2200694, 2619705, 4163355, 4447064, 4695704, 6372794, 9718904, 11903775, 23992215, 26879684, 29357475, 37239735, 40588485, 41207144, 48615735, 56424555, 76466985, 81591194, 83864055, 113664135, 118018094, 166758015
Offset: 1

Views

Author

Jayanta Basu, Mar 24 2013

Keywords

Comments

Intersection of A001274 and A005237. [Alex Ratushnyak, Mar 27 2013]

Crossrefs

Programs

A241003 Numbers k such that anti-phi(k) = anti-phi(k+1).

Original entry on oeis.org

2, 8, 14, 20, 27, 32, 284, 297, 362, 717, 842, 1322, 1377, 1725, 1802, 1917, 1982, 2222, 2637, 3410, 4094, 4149, 4850, 5288, 5642, 5654, 5660, 5690, 5750, 5937, 5949, 6237, 7017, 7245, 7377, 7490, 8097, 8217, 8277, 8462, 8774, 9117, 9542, 9897, 10034, 11409, 11810
Offset: 1

Views

Author

Paolo P. Lava, Aug 07 2014

Keywords

Comments

Like A001274 but using anti-phi, as defined in A066452, instead of phi, per A000010.

Examples

			anti-phi(2) = anti-phi(3) = 1.
anti-phi(8) = anti-phi(9) = 4.
anti-phi(14) = anti-phi(15) = 7. Etc.
		

Crossrefs

Programs

A247174 Numbers k such that phi(k) = phi(k+1) and simultaneously Product_{d|k} phi(d) = Product_{d|(k+1)} phi(d) where phi(x) = Euler totient function (A000010).

Original entry on oeis.org

1, 3, 15, 255, 65535, 2200694, 2619705, 6372794, 40588485, 76466985, 81591194, 118018094, 206569605, 470542485, 525644385, 726638834, 791937614, 971122514, 991172805
Offset: 1

Views

Author

Jaroslav Krizek, Nov 22 2014

Keywords

Comments

Numbers n such that A000010(n) = A000010(n+1) and simultaneously A029940(n) = A029940(n+1).
4294967295 is also a term of this sequence.
Intersection of A001274 and A248795.

Examples

			15 is in the sequence because phi(15) = phi(16) = 8 and simultaneously Product_{d|15} phi(d) = Product_{d|(15+1)} phi(d) = 64.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] |  (&*[EulerPhi(d): d in Divisors(n)]) eq (&*[EulerPhi(d): d in Divisors(n+1)]) and EulerPhi(n) eq EulerPhi(n+1)]
    
  • Magma
    [n: n in [A248795(n)] | EulerPhi(n) eq EulerPhi(n+1)]
  • Mathematica
    a247174[n_Integer] := Module[{a001274, a248795},
      a001274[m_] := Select[Range[m], EulerPhi[#] == EulerPhi[# + 1] &];
      a248795[m_] :=
       Select[Range[m],
        Product[EulerPhi[i], {i, Divisors[#]}] ==
          Product[EulerPhi[j], {j, Divisors[# + 1]}] &];
    Intersection[a001274[n], a248795[n]]] (* Michael De Vlieger, Dec 01 2014 *)

Extensions

a(6)-a(19) using A248795 by Jaroslav Krizek, Nov 25 2014
Previous Showing 31-40 of 56 results. Next