cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 58 results. Next

A079193 Number of isomorphism classes of non-associative non-commutative closed binary operations on a set of order n.

Original entry on oeis.org

0, 4, 3189, 178937854, 2483527282663335, 14325590003288422852078277, 50976900301814584087291456618542388746
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079194.

Crossrefs

Extensions

Edited and extended by Christian G. Bower, Nov 26 2003

A258719 Number of self-dual noncommutative groupoids with n elements.

Original entry on oeis.org

0, 0, 9, 16192, 198862625, 42002510818752, 207278622607612079818, 29215384735442091573649485568, 137562588659577384442574662095693261747, 24724406349174154904254665510689036571978910174560
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2015

Keywords

Crossrefs

Formula

a(n) = A029850(n) - A001425(n). - Andrew Howroyd, May 06 2023

Extensions

a(5)-a(10) from Andrew Howroyd, May 06 2023

A258720 Number of non-self-dual groupoids which are equal to their duals.

Original entry on oeis.org

0, 3, 1596, 89460896, 1241763541901150, 7162795001623210170643008, 25488450150907291894372809845206177481, 77841043345568973636021232493841647618443964915982324, 270925719901279918478856582434909122129159229348142178651137261056627814
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2015

Keywords

Crossrefs

Formula

a(n) = (A001329(n) - A029850(n))/2. - Andrew Howroyd, May 06 2023

Extensions

Terms a(5) and beyond from Andrew Howroyd, May 06 2023

A079173 Number of isomorphism classes of non-associative closed binary operations on a set of order n.

Original entry on oeis.org

0, 5, 3306, 178981764, 2483527537092910, 14325590003318891522247046, 50976900301814584087291487087212542367, 155682086691137947272042502251643461917498831796991599, 541851439802559836957713164869818405872834954135521300809796661279574643
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079174.

Crossrefs

Formula

a(n) = A001329(n) - A027851(n).

Extensions

More terms from Christian G. Bower, Nov 26 2003
a(8)-a(9) added using the data at A001329 and A027851 by Amiram Eldar, Jul 19 2025

A362382 Number of nonisomorphic right involutory magmas with n elements.

Original entry on oeis.org

1, 1, 3, 16, 475, 100666, 267954164, 7178089200724, 2878905036230723360, 16030557330452794172050567, 1643024454743084814743097053747492, 3003719433250221394022136941323628209106412, 119909786948816191249293422143299520925389900896422044
Offset: 0

Views

Author

Andrew Howroyd, Apr 17 2023

Keywords

Comments

A magma with element set X is right involutory if (xy)y = x for x,y in X.

Crossrefs

Cf. A001329 (magmas), A076017, A076019, A361720, A362383 (labeled).

Programs

  • PARI
    B(c,k)=sum(j=0, c\2, if(k%2, 1, 2^(c-2*j))*k^j*binomial(c, 2*j)*(2*j)!/(2^j*j!))
    K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c,k))
    R(v,m)=concat(vector(#v,i,my(t=v[i], g=gcd(t,m)); vector(g, i, t/g)))
    a(n)={my(s=0); forpart(p=n, my(v=Vec(p), S=Set(v)); s+=prod(i=1, #S, my(m=S[i], c=#select(t->t==m, v)); (K(R(v,m))/m)^c/c!)); s}

A079180 Number of isomorphism classes of anti-associative closed binary operations on a set of order n.

Original entry on oeis.org

1, 0, 2, 10, 17780
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Crossrefs

Row sums of A079181.
Cf. A001329, A079177, A079179 (labeled case).

Formula

a(n) = A001329(n) - A079177(n).

Extensions

a(0)=1 prepended and a(1) corrected by Kamil Zabielski, Aug 28 2024

A079190 Number of isomorphism classes of anti-commutative closed binary operations (groupoids) on a set of order n.

Original entry on oeis.org

1, 6, 996, 31857648, 266666713602640, 929809173755713574913480, 2002123402266181527640478418179038176, 3702236248557739850415303240942330019881771301360640, 7805296829528400289943264314587254996361382902046539931447903763389056
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079191.

Crossrefs

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = Product_{i>=1, j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (Sum_{d|i} (d*s_d))^(s_i*(i*s_i+1)/2) * (-1 + Sum_{d|i} (d*s_d))^(s_i*(i*s_i-1)/2) or {i=j, even} (Sum_{d|i and i/d is odd} (d*s_d))^s_i * (Sum_{d|i} (d*s_d))^(i*s_i^2/2) * (-1 + Sum_{d|i} (d*s_d))^(s_i*(i*s_i-2)/2) or {i < j} (Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j) or {i > j} (-1 + Sum_{d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j). [Corrected by Sean A. Irvine, Aug 03 2025]
a(n) is asymptotic to (n^binomial(n+1, 2) * (n-1)^binomial(n, 2))/n! = A079189(n)/A000142(n)

Extensions

Edited, corrected and extended with formula by Christian G. Bower, Dec 12 2003
a(9) from Sean A. Irvine, Aug 03 2025

A029850 Number of self-converse groupoids.

Original entry on oeis.org

1, 1, 4, 138, 60160, 453292525, 72471180989664, 298545867396801815077, 37263960166680610905649057368, 161614516495439236943507628117344255307, 27480138271604938271870114918720067827110789528890
Offset: 0

Views

Author

Christian G. Bower, Jan 15 1998, Jun 15 1998, Dec 05 2003

Keywords

Crossrefs

a(n) = 2*A001424(n) - A001329(n). Cf. A001425.

Formula

a(n) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (sum {d|i*2} (d*s_d))^((i*s_i^2-s_i)/2) * (sum {d|i} (d*s_d))^s_i or {i=j == 0 mod 4} (sum {d|i} (d*s_d))^(i*s_i^2) or {i=j == 2 mod 4} (sum {d|i} (d*s_d))^(i*s_i^2-s_i) * (sum {d|i/2} (d*s_d))^(2*s_i) or {i != j} (sum {d|lcm(i, j, 2)} (d*s_d))^(2*i*j*s_i*s_j/lcm(2*i*j)).

Extensions

Formula corrected by Sean A. Irvine and Christian G. Bower, Jul 13 2012

A079187 Number of isomorphism classes of non-anti-commutative closed binary operations (groupoids) on a set of order n.

Original entry on oeis.org

1, 4, 2334, 147124304, 2216860823492185, 13395780829563177947362200, 48974776899548402559651008669035131863, 151979850442580207421627199010701131897617064179661376, 534046142973031436667769900555231150876473571233474760878454735694121879
Offset: 1

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Each a(n) is equal to the sum of the elements in row n of A079188.

Crossrefs

Formula

a(n) = A001329(n) - A079190(n), n > 1.

Extensions

Edited, corrected and extended by Christian G. Bower, Dec 12 2003
a(9) from Sean A. Irvine, Aug 03 2025

A361720 Number of nonisomorphic right involutory Płonka magmas with n elements.

Original entry on oeis.org

1, 1, 2, 4, 12, 37, 164, 849, 6081, 56164, 698921
Offset: 0

Views

Author

Philip Turecek, Apr 14 2023

Keywords

Comments

Alexandrul Chirvasitu and Gigel Militaru introduced the notion of a right Płonka magma as a magma X that satisfies (xy)z = (xz)y and x(yz) = xy for all x,y,z in X. It is called involutory, if it satisfies the additional property (xy)y = x for all x,y in X.
A right Płonka magma (X,*) is associative if and only if there exists an idempotent self-map f = f^2: X -> X such that x*y = f(x) for all x,y in X (the rows of the corresponding Cayley table must necessarily be constant). Thus the total number of associative right Płonka magmas on a given set of n elements is A000248 with A000041 as the corresponding number of isomorphism classes.

References

  • J. Płonka, "On k-cyclic groupoids", Math. Japon. 30 (3), 371-382 (1985).

Crossrefs

A362821 is the labeled version.

Programs

  • Sage
    def right_involutory_plonka(n):
        G = Integers(n)
        Perm = SymmetricGroup(list(G))
        M = [sigma for sigma in Perm if sigma == ~sigma]
        def is_compatible(r):
            return all([ r[i]*r[j] == r[j]*r[i] and r[r[i](j)] == r[j] for i in range(len(r)) for j in range(len(r)) if ZZ(r[i](j)) < len(r) ])
        def possible_extensions(r):
            R = []
            for m in M:
                r_new = r+[m]
                if is_compatible(r_new):
                    R += [r_new]
            return R
        def extend(R):
            R_new = []
            for r in R:
                R_new += possible_extensions(r)
            return R_new
        i = 0
        R = [[]]
        while i < n:
            R = extend(R)
            i += 1
        act = lambda sigma,r: [(~sigma)*r[(~sigma)(i)]*sigma for i in range(len(r))]    # In Sage, the composition of permutations is reversed.
        orbits = []
        while R:
            r = R.pop()
            orb = []
            for sigma in Perm:
                orb += [tuple(act(sigma,r))]
                try: R.remove(act(sigma,r))
                except: pass
            orbits += [set(orb)]
        return len(orbits)
    
  • Sage
    def right_involutory_plonka(n):
        N = range(n)
        Perm = SymmetricGroup(N)
        M = [sigma for sigma in Perm if sigma == ~sigma]
        def is_compatible(r,r_new):
            length = len(r)
            inds = range(length)
            for i in inds:
                if not r[i]*r_new == r_new*r[i]:
                    return [false]
            for i in inds:
                rni = r_new(i)
                if i < rni < length:
                    if not r[rni] == r[i]:
                        return [false]
                if rni == length:
                    if not r_new == r[i]:
                        return [false]
            for i in inds:
                for j in inds:
                    if r[i](j) == length:
                        if not r_new == r[j]:
                            return [false]
            return true, r+[r_new]
        def possible_extensions(r):
            R = []
            for m in M:
                r_potential = is_compatible(r,m)
                if r_potential[0]:
                    R += [r_potential[1]]
            return R
        def extend(R):
            R_new = []
            for r in R:
                R_new += possible_extensions(r)
            return R_new
        R = [[]]
        for i in N:
            R = extend(R)
        act = lambda sigma,r: [(~sigma)*r[(~sigma)(i)]*sigma for i in range(n)]    # In Sage, the composition of permutations is reversed.
        orbits = []
        while R:
            r = R.pop()
            orb = []
            for sigma in Perm:
                r_iso = act(sigma,r)
                orb += [tuple(r_iso)]
                try: R.remove(r_iso)
                except: pass
            orbits += [set(orb)]
        return len(orbits)

Extensions

a(8)-a(10) from Andrew Howroyd, Apr 17 2023
Previous Showing 11-20 of 58 results. Next