cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 1775 results. Next

A330478 Semiprimes A001358(k) = p*q such that p*q+p+q and r*s+r+s are consecutive primes, where A001358(k+1)=r*s.

Original entry on oeis.org

33, 1718, 4174, 7971, 8434, 11114, 13011, 14005, 16645, 17571, 29787, 30574, 43647, 58414, 63177, 65006, 69694, 71794, 87218, 95314, 97827, 104485, 125738, 126394, 150334, 193594, 196341, 198694, 200378, 201094, 212631, 212847, 227554, 239314, 243591, 254427, 276085, 277594, 288818, 291514
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 15 2019

Keywords

Examples

			a(3)=4174=2*2087, the next semiprime is 4178=2*2089, and 4174+2+2087=6263 and 4178+2+2089=6269 are consecutive primes.
		

Crossrefs

Cf. A001358.

Programs

  • Maple
    g:= proc(n) local F;
      F:= ifactors(n)[2];
      if nops(F)=2 then n+F[1][1]+F[2][1] else n+2*F[1][1] fi
    end proc:
    SP:= select(t -> numtheory:-bigomega(t)=2, [seq(i,i=4..3*10^5)]):
    nSP:= nops(SP):
    P1:= map(g, SP):
    SP[select(t -> isprime(P1[t]) and nextprime(P1[t])=P1[t+1], [$1..nSP-1])];
  • Mathematica
    Select[Partition[Union@ Apply[Join, Table[Flatten@ {p #, Sort[{p, #}]} & /@ Prime@ Range@ PrimePi@ Floor[Max[#]/p], {p, #}]] &@ Prime@ Range[3*10^4], 2, 1], And[AllTrue[{#1, #2}, PrimeQ], #2 == NextPrime@ #1] & @@ {Total@ #1, Total@ #2} & @@ # &][[All, 1, 1]] (* Michael De Vlieger, Dec 15 2019 *)

A339314 a(n) is the least semiprime k > n-th semiprime s = A001358(n) such that k-s and k+s are both semiprimes.

Original entry on oeis.org

10, 15, 86, 25, 35, 106, 25, 55, 94, 51, 58, 85, 39, 77, 94, 95, 74, 55, 106, 178, 143, 155, 69, 118, 95, 142, 121, 118, 119, 91, 146, 142, 115, 206, 115, 115, 206, 169, 134, 146, 143, 178, 133, 158, 155, 262, 177, 158, 178, 155, 159, 183, 254, 194, 205, 202, 226, 187, 298, 206, 226, 209
Offset: 1

Views

Author

Zak Seidov, Dec 17 2020

Keywords

Comments

Differences k - s: 6, 9, 77, 15, 21, 91, 4, 33, 69, 25, ... with minimal value 4.
What about the maximal value of k - s?
k-s is unbounded, because the gaps between semiprimes are unbounded. In fact, given any n distinct primes, by the Chinese Remainder Theorem there exist n consecutive positive integers that are each divisible by the cube of one of these primes (and thus not semiprimes). - Robert Israel, Dec 27 2020

Examples

			s=4, k=10, 6 and 14 are all semiprimes,
s=6, k=15, 9 and 21 are all semiprimes,
s=9, k=86, 77 and 95 are all semiprimes.
		

Crossrefs

Cf. A001358.

Programs

  • Maple
    N:= 10^3:
    SP:= select(t -> numtheory:-bigomega(t)=2, [$4..N]):
    f:= proc(n) local i,s;
      s:= SP[n];
      for i from n+1 do
        if numtheory:-bigomega(SP[i]-s)=2 and numtheory:-bigomega(SP[i]+s)=2 then return SP[i] fi
      od;
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 27 2020
  • PARI
    issemip(n) = bigomega(n)==2;
    lista(nn) = {my(v = select(issemip, [1..nn])); for (n=1, #v, my(ik=n+1, s=v[n]); while (!(issemip(v[ik]+s) && issemip(v[ik]-s)), ik++; if (ik>#v, return)); print1(v[ik], ", "););} \\ Michel Marcus, Dec 19 2020

A365939 Gilbreath transform of semiprimes (A001358).

Original entry on oeis.org

4, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 25 2023

Keywords

Crossrefs

Leading terms of rows of the array in A131749.

Programs

  • Mathematica
    A365939list[upto_]:=If[upto<4,{},Module[{d=Select[Range[upto],PrimeOmega[#]==2&]},Join[{4},Table[First[d=Abs[Differences[d]]],Length[d]-1]]]];A365939list[500] (* Paolo Xausa, Sep 25 2023 *)

Extensions

More terms from Pontus von Brömssen, Sep 25 2023

A105934 Positive integers n such that n^22 + 1 is semiprime (A001358).

Original entry on oeis.org

116, 176, 184, 300, 444, 470, 584, 690, 696, 950
Offset: 1

Views

Author

Jonathan Vos Post, Apr 26 2005

Keywords

Comments

We have the polynomial factorization: n^22 + 1 = (n^2 + 1) * (n^20 - n^18 + n^16 - n^14 + n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1). Hence after the initial n=1 prime, the binomial can never be prime. It can be semiprime iff n^2+1 is prime and (n^20 - n^18 + n^16 - n^14 + n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1) is prime.

Examples

			116^22 + 1 = 2618639792014920380336685706161496723088736257 = 13457 * 194593133091693570657404005808240820620401,
300^22 + 1 = 3138105960900000000000000000000000000000000000000000001 = 90001 * 34867456593815624270841435095165609271008099910001,
950^22 + 1 = 323533544973709366507562922501564025878906250000000000000000000001 = 902501 * 358485525194663902319845543109164450653136395416736380347501.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [2..1000] | IsSemiprime(n^22+1)]; // Vincenzo Librandi, Dec 21 2010
  • Mathematica
    Select[Range[1000], PrimeOmega[#^22 + 1]==2&] (* Vincenzo Librandi, May 24 2014 *)

Formula

a(n)^22 + 1 is in A001358. a(n)^2+1 is in A000040 and (a(n)^20 - a(n)^18 + a(n)^16 - a(n)^14 + a(n)^12 - a(n)^10 + a(n)^8 - a(n)^6 + a(n)^4 - a(n)^2 + 1) is in A000040.

A115698 Semiprimes (A001358) whose digit reversal is the product of 2 palindromes greater than 1.

Original entry on oeis.org

4, 6, 9, 21, 22, 33, 46, 51, 55, 65, 77, 82, 94, 121, 202, 203, 253, 262, 303, 393, 407, 427, 445, 446, 451, 485, 505, 559, 583, 626, 667, 669, 671, 687, 707, 789, 803, 849, 869, 889, 939, 1042, 1111, 1441, 1622, 1661, 1991, 2031, 2123, 2157, 2173, 2321
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			669=3*223 is semiprime and 966=6*161.
		

Crossrefs

A116026 phi(n) plus n gives a semiprime (A001358).

Original entry on oeis.org

4, 5, 9, 10, 11, 13, 17, 21, 26, 29, 30, 43, 45, 47, 49, 55, 57, 58, 61, 66, 67, 70, 71, 73, 75, 82, 87, 89, 99, 101, 102, 103, 106, 107, 109, 111, 115, 119, 123, 127, 129, 130, 146, 151, 153, 154, 175, 181, 182, 183, 185, 190, 191, 195, 197, 202, 203, 205, 207
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			phi(101)+101=201=3*67.
		

Crossrefs

A116691 Continued fraction expansion of concatenation of semiprimes (A001358).

Original entry on oeis.org

0, 2, 7, 1, 1, 2, 4, 26, 1, 4, 1, 7, 2, 2, 1, 1, 6, 1, 3, 1, 8, 1, 7, 6, 1, 1, 1, 22, 3, 18, 2, 1, 24, 11, 1, 2, 1, 5, 7, 1, 2, 1, 3, 20, 1, 1, 5, 2, 70, 1, 1, 2, 2, 1, 1, 1, 1, 2, 5, 1, 2, 1, 1, 6, 2, 153, 1, 2, 1, 10, 13, 4, 1, 4, 1, 3, 1, 1, 3, 2, 2, 6, 3, 1, 4, 1, 7, 1, 1, 6, 1, 1, 14, 2, 1, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Jonathan Vos Post, Mar 15 2006

Keywords

Comments

This is the semiprime analog of A030168: continued fraction expansion of Copeland-Erdős constant (concatenated primes). Decimal expansion of real number formed from concatenation of first 101 digits of A001358, to first 50 terms of continued fraction expansion: 0.469101415212225... = 0 + 1/2+ 1/7+ 1/1+ 1/1+ 1/2+ 1/4+ 1/26+ 1/1+ 1/4+ 1/1+... It seems likely that the real number itself is transcendental.

Crossrefs

Cf. A033308 Decimal expansion of Copeland-Erdős constant: concatenate primes.

Extensions

Extended and edited by Charles R Greathouse IV, Apr 25 2010

A131701 Decimal expansion of the continued fraction 4+6/(9+10/(14+15/21+...)) where the terms are the semiprimes: A001358.

Original entry on oeis.org

4, 6, 1, 9, 7, 7, 6, 8, 9, 0, 3, 3, 0, 3, 6, 8, 9, 3, 8, 0, 6, 8, 2, 1, 1, 9, 9, 6, 8, 4, 3, 7, 4, 2, 3, 8, 4, 0, 1, 7, 2, 8, 2, 5, 5, 6, 4, 4, 1, 2, 9, 2, 3, 3, 8, 9, 8, 4, 2, 0, 8, 2, 3, 2, 9, 6, 3, 7, 4, 4, 6, 3, 0, 8, 4, 4, 2, 5, 9, 6, 4, 4, 8, 6, 7, 2, 8, 7, 1, 8, 8, 0, 3, 1, 6, 6, 5, 0, 8, 2, 3, 6, 4, 2, 8
Offset: 1

Views

Author

Keywords

Examples

			4.6197768903303689380682119968437423840172825564412923389842082329...
		

Crossrefs

Programs

  • Mathematica
    semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; lst = Select[Range@ 400, semiPrimeQ@ # &]; First@ RealDigits@ N[ Fold[ Last@ #2 + First@ #2/#1 &, 4, Partition[Reverse@ lst, 2]], 111] (* Robert G. Wilson v *)

A137253 Semiprimes (A001358) which are not the sum of two semiprimes.

Original entry on oeis.org

4, 6, 9, 22, 33
Offset: 1

Views

Author

Zak Seidov, Mar 11 2008

Keywords

Comments

Apparently the list is complete.

Crossrefs

Cf. A001358.

A146490 Decimal expansion of Product_{q in A001358} (1-1/(q^3*(q-1))).

Original entry on oeis.org

9, 9, 3, 5, 2, 1, 5, 8, 9, 7, 1, 0, 5, 0, 5, 4, 6, 0, 6, 7, 5, 4, 0, 9, 2, 6, 9, 2, 4, 1, 4, 1, 6, 4, 2, 9, 4, 0, 1, 1, 1, 5, 0, 7, 8, 6, 7, 7, 8, 1, 5, 6, 6, 0, 1, 8, 8
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

Semiprime analog of A065415.

Examples

			0.993521589710505460675409269.. = (1-1/192)*(1-1/1080)*(1-1/5832)*...
		

Formula

The logarithm is -sum_{s>=2} sum_{j=1..floor[s/(1+r)]} binomial(s-r*j-1,j-1)*P_2(s)/j at r=3, where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900.
Previous Showing 91-100 of 1775 results. Next