A052503
Number of permutations sigma of [2n] without fixed points such that sigma^4 = Id.
Original entry on oeis.org
1, 1, 9, 105, 2625, 76545, 3440745, 176080905, 12034447425, 922995698625, 87505195602825, 9203114782686825, 1141501848477415425, 155540530213013570625, 24232951756530007115625, 4112826185329479728735625, 781060320618828163499210625
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Bisection of column k=4 of
A261430.
-
m:=40; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x^2/2 + x^4/4) )); [Factorial(2*n-2)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, May 14 2019
-
spec := [S,{S=Set(Union(Cycle(Z,card=2),Cycle(Z,card=4)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nmax = 40}, CoefficientList[Series[Exp[x^2*(2 + x^2)/4], {x, 0, nmax}], x]*(Range[0, nmax])!][[1 ;; -1 ;; 2]] (* G. C. Greubel, May 14 2019 *)
-
x='x+O('x^40); v=Vec(serlaplace( exp(x^2/2 + x^4/4) )); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, May 14 2019
-
m = 40; T = taylor(exp(x^2/2 + x^4/4), x, 0, 2*m+2); [factorial(2*n)*T.coefficient(x, 2*n) for n in (0..m)] # G. C. Greubel, May 14 2019
A053498
Number of degree-n permutations of order dividing 8.
Original entry on oeis.org
1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 607251736576, 7244686764032, 101611422797824, 1170362064019456, 19281174853615616, 261583327556386816, 4084459360167657472, 54366023748591386624
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^4/4 +x^8/8) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 4, 8])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
CoefficientList[Series[Exp[x+x^2/2+x^4/4+x^8/8], {x, 0, 23}], x]*Range[0, 23]! (* Jean-François Alcover, Mar 24 2014 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^2/2 +x^4/4 +x^8/8) )) \\ G. C. Greubel, May 14 2019
-
m = 30; T = taylor(exp(x +x^2/2 +x^4/4 +x^8/8), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019
A053504
Number of degree-n permutations of order dividing 24.
Original entry on oeis.org
1, 1, 2, 6, 24, 96, 576, 3312, 26496, 198144, 1691136, 14973696, 193370112, 2034809856, 25087186944, 313539434496, 4421478721536, 58307347556352, 915011420737536, 13553664911437824, 240637745416421376, 3965015057937924096
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^3/3 +x^4/4 +x^6/6 +x^8/8 +x^12/12 +x^24/24) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 4, 6, 8, 12, 24])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jan 25 2014
-
a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 4, 6, 8, 12, 24}}]]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
With[{nn=30},CoefficientList[Series[Exp[Total[x^#/#&/@Divisors[24]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 05 2016 *)
-
N=30; x='x+O('x^N);
Vec(serlaplace(exp(sumdiv(24, d, x^d/d)))) \\ Gheorghe Coserea, May 11 2017
-
m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^4/4 +x^6/6 +x^8/8 +x^12/12 +x^24/24), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
A061130
Number of degree-n even permutations of order dividing 6.
Original entry on oeis.org
1, 1, 1, 3, 12, 36, 126, 666, 6588, 44892, 237996, 2204676, 26370576, 219140208, 1720782792, 19941776856, 234038005776, 2243409386256, 23225205107088, 295070141019312, 4303459657780416, 55200265166477376, 660776587455193056
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A053500
Number of degree-n permutations of order dividing 10.
Original entry on oeis.org
1, 1, 2, 4, 10, 50, 220, 1240, 6140, 32860, 602200, 5668400, 62030200, 522328600, 4487190800, 62591332000, 715163146000, 9573774122000, 105731659828000, 1187355279592000, 29205778751300000, 481597207656340000, 9086318388933400000, 132525988426667120000
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^5/5 + x^10/10) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 5, 10])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}] *a[n-j], {j, {1, 2, 5, 10}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 24 2014, after Alois P. Heinz *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^5/5 +x^10/10], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^5/5 + x^10/10) )) \\ G. C. Greubel, May 15 2019
-
m = 30; T = taylor(exp(x + x^2/2 + x^5/5 + x^10/10), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
A053501
Number of degree-n permutations of order dividing 11.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3628801, 43545601, 283046401, 1320883201, 4953312001, 15850598401, 44910028801, 115482931201, 274271961601, 609493248001, 1279935820801, 4644633666390681601, 106826520356358566401, 1281918194457262387201
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^11/11) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 11])))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 14 2013
-
a[n_]:= n!*Sum[If[Mod[11*k-n, 10] == 0, Binomial[k, (11*k-n)/10]*11^((k-n)/10)/k!, 0], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 20 2014, after Vladimir Kruchinin *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^11/11], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
-
a(n):=n!*sum(if mod(11*k-n,10)=0 then binomial(k,(11*k-n)/10)*(11)^((k-n)/10)/k! else 0,k,1,n); /* Vladimir Kruchinin, Sep 10 2010 */
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^11/11) )) \\ G. C. Greubel, May 15 2019
-
m = 30; T = taylor(exp(x +x^11/11), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
A053503
Number of degree-n permutations of order dividing 16.
Original entry on oeis.org
1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 1914926104576, 29475151020032, 501759779405824, 6238907914387456, 120652091860975616, 1751735807564578816, 29062253310781161472, 398033706586943258624
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..2^j-1)*a(n-2^j), j=0..4)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
a[n_]:= a[n] =If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, 2^j-1}]* a[n-2^j], {j, 0, 4}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^4/4 +x^8/8 + x^16/16], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16) )) \\ G. C. Greubel, May 15 2019
-
m = 30; T = taylor(exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
A061134
Number of degree-n even permutations of order exactly 8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 226800, 2494800, 29937600, 259459200, 1816214400, 10897286400, 301491590400, 4419628012800, 51209462304000, 482551041772800, 6979977625420800, 92611036249804800, 2078225819199129600
Offset: 1
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A061137
Number of degree-n odd permutations of order dividing 6.
Original entry on oeis.org
0, 0, 1, 3, 6, 30, 270, 1386, 6048, 46656, 387180, 2469060, 17204616, 158065128, 1903506696, 18887563800, 163657221120, 2095170230016, 30792968596368, 346564643468976, 3905503235814240, 58609511127871200, 866032039742528736
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496-
A053505,
A001189,
A001471,
A001473,
A061121-
A061128,
A000704,
A061129-
A061132,
A048099,
A051695,
A061133-
A061135,
A001465,
A061136-
A061140.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3)*Sinh(x^2/2 + x^6/6) )); [0,0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Jul 02 2019
-
Egf:= exp(x + x^3/3)*sinh(x^2/2 + x^6/6):
S:= series(Egf,x,31):
seq(coeff(S,x,j)*j!,j=0..30); # Robert Israel, Jul 13 2018
-
With[{m=30}, CoefficientList[Series[Exp[x + x^3/3]*Sinh[x^2/2 + x^6/6], {x, 0, m}], x]*Range[0,m]!] (* Vincenzo Librandi, Jul 02 2019 *)
-
my(x='x+O('x^30)); concat([0,0], Vec(serlaplace( exp(x + x^3/3)*sinh(x^2/2 + x^6/6) ))) \\ G. C. Greubel, Jul 02 2019
-
m = 30; T = taylor(exp(x + x^3/3)*sinh(x^2/2 + x^6/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019
A061138
Number of degree-n odd permutations of order exactly 4.
Original entry on oeis.org
0, 0, 0, 0, 6, 30, 90, 210, 1680, 12096, 114660, 833580, 5928120, 38112360, 259194936, 1739195640, 17043237120, 167089937280, 1837707369840, 18342985021776, 181206905922720, 1673742164139360, 16992525855006240
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135,
A001465,
A061136 -
A061140.
Comments