cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 55 results. Next

A201923 E.g.f. satisfies: A(x) = 1/(cos(x*A(x)) - sin(x*A(x))).

Original entry on oeis.org

1, 1, 5, 44, 581, 10256, 227529, 6088256, 190930729, 6870227200, 279066777613, 12632667642880, 630670054092525, 34426087332253696, 2039903110075608977, 130404672744539242496, 8946117466489960168913, 655585000075494566199296, 51111210765059412626238741
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2011

Keywords

Comments

Compare e.g.f. to: LambertW(-x)/(-x) = (1/x)*Series_Reversion(x*(cosh(x) - sinh(x))).
The radius of convergence r of e.g.f. A(x) is given by:
r = t*(cos(t) - sin(t)) where tan(t) = (1-t)/(1+t), which evaluates as:
r = 0.21266685344074710045360679397024815598865409988038...
t = 0.40262817418811160981993252391123072456350647779608...
Further, A(r) = 1/(cos(t) - sin(t)), thus
A(r) = 1.89323426605496483543109751303457163422769666683274...

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 44*x^3/3! + 581*x^4/4! + 10256*x^5/5! +...
where
1/(cos(x)-sin(x)) = 1 + x + 3*x^2/2! + 11*x^3/3! + 57*x^4/4! + 361*x^5/5! + 2763*x^6/6! +...+ A001586(n)*x^n/n! +...
The coefficient of x^n/n! in powers of G(x) = 1/(cos(x)-sin(x)) begins:
G^1: [(1), 1, 3, 11, 57, 361, 2763, 24611, ..., A001586(n), ...];
G^2: [1,(2), 8, 40, 256, 1952, 17408, 177280, ..., A000828(n+1), ...];
G^3: [1, 3,(15), 93, 705, 6243, 63375, 724413, ...];
G^4: [1, 4, 24,(176), 1536, 15424, 175104, 2214656, ...];
G^5: [1, 5, 35, 295,(2905), 32525, 407435, 5638495, ...];
G^6: [1, 6, 48, 456, 4992, (61536), 841728, 12633216, ...];
G^7: [1, 7, 63, 665, 8001, 107527, (1592703), 25738265, ...];
G^8: [1, 8, 80, 928, 12160, 176768, 2816000, (48706048), ...]; ...
where coefficients in parenthesis form the initial terms of this sequence:
[1/1, 2/2, 15/3, 176/4, 2905/5, 61536/6, 1592703/7, 48706048/8, ...].
		

Crossrefs

Cf. A001586.

Programs

  • Mathematica
    CoefficientList[1/x*InverseSeries[Series[x*(Cos[x] - Sin[x]), {x, 0, 21}], x],x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 12 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n));n!*polcoeff(1/x*serreverse(x*(cos(X)-sin(X) )),n)}
    
  • PARI
    {a(n)=local(A=1+x,X=x+x*O(x^n));for(i=1,n,A=1/(cos(X*A) - sin(X*A)));n!*polcoeff(A,n)}

Formula

E.g.f. satisfies: A( x*(cos(x) - sin(x)) ) = 1/(cos(x) - sin(x)).
E.g.f: (1/x) * Series_Reversion( x*(cos(x) - sin(x)) ).
a(n) = [x^n/n!] 1/(cos(x)-sin(x))^(n+1) / (n+1).
a(n) ~ n^(n-1) * sqrt((t*cos(2*t))/(3+sin(2*t))) / (exp(n) * r^(n+1)), where r and t were described above. - Vaclav Kotesovec, Jan 12 2014

A385283 Expansion of e.g.f. 1/(1 - 2 * x * cos(2*x))^(1/2).

Original entry on oeis.org

1, 1, 3, 3, -39, -775, -9045, -85813, -426447, 7321329, 325555155, 7786757011, 137053423881, 1388713844713, -21121997539461, -1827406866674085, -69034283067822495, -1852635543265039903, -30574875232261547613, 308376017794648053539, 54871741689019890859065
Offset: 0

Views

Author

Seiichi Manyama, Jun 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a001147(n) = prod(k=0, n-1, 2*k+1);
    a(n) = sum(k=0, n, a001147(k)*(2*I)^(n-k)*a185951(n, k));

Formula

a(n) = Sum_{k=0..n} A001147(k) * (2*i)^(n-k) * A185951(n,k), where i is the imaginary unit and A185951(n,0) = 0^n.

A117443 Expansion of e.g.f.: exp(x)/(cos(x) + sin(x)).

Original entry on oeis.org

1, 0, 2, -4, 28, -160, 1272, -11184, 114448, -1309440, 16680992, -233587264, 3569157568, -59075960320, 1053056675712, -20111857791744, 409715696197888, -8868323731660800, 203247024658514432, -4916860703228314624, 125206830774036241408, -3347784042587048058880
Offset: 0

Views

Author

Paul Barry, Mar 16 2006

Keywords

Comments

Row sums of number triangle A117442. Binomial transform of alternating sign Springer numbers (-1)^n*A001586(n).

Crossrefs

Cf. A117442.

Programs

  • Mathematica
    CoefficientList[Series[E^x/(Cos[x]+Sin[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
    A117442[n_, k_]:= (-1)^(n-k)*Binomial[n, k]*Abs[Numerator[EulerE[n-k, 1/4]]]; Table[Sum[A117442[n, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Jun 02 2021 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(x)/(cos(x) + sin(x)))) \\ Michel Marcus, Jun 02 2021
  • Sage
    @CachedFunction
    def f(n): return (-1/4)^n*sum( binomial(n, j)*2^j*euler_number(j) for j in (0..n) ) # f(n) = Euler(n, 1/4)
    def A117443(n): return sum( (-1)^(n+k)*binomial(n,k)*abs(numerator(f(n-k))) for k in (0..n) )
    [A117443(n) for n in (0..30)] # G. C. Greubel, Jun 02 2021
    

Formula

E.g.f.: 1/Q(0); Q(k)=1-(x^2)/((4*k+1)*(2*k+1)+2*x*(4*k+1)*(2*k+1)/(4*k+3-2*x-x*(4*k+3)/(x-(4*k+4)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 28 2011
G.f.: 1/Q(0) where Q(k) = 1 + 4*k*x - 2*x^2*(2*k + 1)^2/( 1 + (4*k+2)*x - 2*x^2*(2*k + 2)^2/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 10 2013
a(n) ~ (-1)^n * n! * 2^(2*n+3/2) / (Pi^(n+1) * exp(Pi/4)). - Vaclav Kotesovec, Aug 04 2014
a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(n, k) * abs(numerator( Euler(n-k, 1/4) )), where Euler(n, x) is the Euler number polynomial. - G. C. Greubel, Jun 02 2021

A235166 E.g.f. satisfies: A'(x) = A(x)^2/A(-x)^2, with A(0)=1.

Original entry on oeis.org

1, 1, 4, 16, 88, 640, 5440, 54400, 620800, 7966720, 113651200, 1783091200, 30519808000, 565916876800, 11300689100800, 241781039104000, 5517822373888000, 133795711025152000, 3435107208822784000, 93093522064998400000, 2655675672405606400000, 79546285618254315520000
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2014

Keywords

Comments

See comments by Roland Bacher in A098777 which imply that this sequence is related to elliptic functions.
Compare to: G'(x) = G(x)^2/G(-x) dx, which holds when G(x) = 1/(cos(x) - sin(x)), the e.g.f. of A001586 (Springer numbers).

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 16*x^3/3! + 88*x^4/4! + 640*x^5/5! +...
Related series.
A(x)^2 = 1 + 2*x + 10*x^2/2! + 56*x^3/3! + 400*x^4/4! + 3440*x^5/5! +...
1/A(x) = 1 - x - 2*x^2/2! + 2*x^3/3! + 16*x^4/4! - 40*x^5/5! - 320*x^6/6! +...+ A098777(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    kmax = 21;
    A[x_] = 1+x; Do[A[x_] = 1+Integrate[A[x]^2/A[-x]^2+O[x]^k, x] // Normal, {k, 1, kmax}];
    CoefficientList[A[x], x] Range[0, kmax]! (* Jean-François Alcover, Jul 29 2018 *)
  • PARI
    {a(n)=local(A=1+x); for(i=0, n, A=1+intformal(A^2/subst(A, x,-x +x*O(x^n))^2 +x*O(x^n) )); n!*polcoeff(A, n)}
    for(n=0,21,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1); A=1/(1-3*serreverse(intformal(1/(1-9*x^2 +x*O(x^n))^(2/3))))^(1/3); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: 1/(1 - 3*Series_Reversion( Integral 1/(1 - 9*x^2)^(2/3) dx ))^(1/3).
E.g.f.: 1/F(x), where F(x) equals the e.g.f. of A098777 (pseudo-factorials).
a(n) ~ 2^(-2/3) * n! * (9*GAMMA(2/3)^3/(2^(2/3)*Pi^2))^(n+1). - Vaclav Kotesovec, Feb 24 2014

A245204 The unique integer r with |r| < prime(n)/2 such that E_{prime(n)-3}(1/4) == r (mod prime(n)), where E_m(x) denotes the Euler polynomial of degree m.

Original entry on oeis.org

1, 2, 2, 4, 1, 1, 5, 1, -2, -6, 10, 14, 5, 7, 7, -28, -12, 13, 14, 26, -21, -31, -13, -10, -11, -7, -6, 5, 2, -21, 2, 33, -15, -24, 34, 71, -15, 24, 9, 37, 73, -18, -84, -65, 9, -90, -65, -47, 97, -64, -100, -8, 41, 81, -81, -71, -65, -70, 113, 10, -80, 119, 57, 78, 20, 124, 167, -71, -48
Offset: 2

Views

Author

Zhi-Wei Sun, Jul 13 2014

Keywords

Comments

Conjecture: a(n) = 0 infinitely often. In other words, there are infinitely many odd primes p such that E_{p-3}(1/4) == 0 (mod p) (equivalently, p divides A001586(p-3)).
This seems reasonable in view of the standard heuristic arguments. The first n with a(n) = 0 is 171 with prime(171) = 1019. The next such a number n is greater than 2600 and hence prime(n) > 23321.
Zhi-Wei Sun made many conjectures on congruences involving E_{p-3}(1/4), see the reference.

Examples

			a(3) = 2 since E_{prime(3)-3}(1/4) = E_2(1/4) = -3/16 == 2 (mod prime(3)=5).
		

Crossrefs

Programs

  • Mathematica
    rMod[m_,n_]:=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,-n/2]
    a[n_]:=rMod[EulerE[Prime[n]-3,1/4],Prime[n]]
    Table[a[n],{n,2,70}]

A339058 a(n) = 4^n*Euler(n, 1/4)*2^(valuation_{2}(n + 1)).

Original entry on oeis.org

1, -2, -3, 44, 57, -722, -2763, 196888, 250737, -5746082, -36581523, 2049374444, 7828053417, -259141449842, -2309644635483, 705775346640176, 898621108880097, -38901437271432002, -445777636063460643, 43136210244502819244, 274613643571568682777, -14685255919931552812562
Offset: 0

Views

Author

Peter Luschny, Nov 27 2020

Keywords

Examples

			The array of the general case starts:
[k]
[1] 1,  1,  0, -1,   0,     1,     0,     -17,       0, ... [A198631]
[2] 1,  0, -1,  0,   5,     0,   -61,       0,    1385, ... [A122045]
[3] 1, -1, -2, 13,  22,  -121,  -602,   18581,   30742, ... [A156179]
[4] 1, -2, -3, 44,  57,  -722, -2763,  196888,  250737, ... [this sequence]
[5] 1, -3, -4, 99, 116, -2523, -8764, 1074243, 1242356, ... [A156182]
...
		

Crossrefs

Note the difference from A001586, A188458, and A212435.

Programs

  • Maple
    a := n -> 4^n*euler(n, 1/4)*2^padic[ordp](n+1, 2): seq(a(n), n=0..9);
  • Mathematica
    Array[4^#*EulerE[#, 1/4]*2^IntegerExponent[# + 1, 2] &, 22, 0] (* Michael De Vlieger, Mar 15 2022 *)
  • SageMath
    def euler_sum(n):
        return (-1)^n*sum(2^k*binomial(n, k)*euler_number(k) for k in (0..n))
    def a(n): return euler_sum(n) << valuation(n + 1, 2)
    print([a(n) for n in range(22)])

A352151 Expansion of e.g.f. 1/(cos(x) - tan(x)).

Original entry on oeis.org

1, 1, 3, 14, 81, 616, 5523, 58064, 697281, 9417856, 141368643, 2334020864, 42039523281, 820296426496, 17237259945363, 388087200241664, 9320064293358081, 237814050877505536, 6425096888209255683, 183232685725482942464, 5500505587921088841681
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 20; Range[0, m]! * CoefficientList[Series[1/(Cos[x] - Tan[x]), {x, 0, m}], x] (* Amiram Eldar, Mar 06 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(cos(x)-tan(x))))
    
  • PARI
    c(n) = ((-4)^n-(-16)^n)*bernfrac(2*n)/(2*n);
    b(n) = if(n%2==1, c((n+1)/2), (-1)^(n/2+1));
    a(n) = if(n==0, 1, sum(k=1, n, b(k)*binomial(n, k)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} b(k) * binomial(n,k) * a(n-k), where b(k) = A000182((k+1)/2) if k is odd, otherwise (-1)^(k/2+1).
From Vaclav Kotesovec, Mar 06 2022: (Start)
a(n) ~ n! / (sqrt(5) * (arctan(sqrt((sqrt(5) - 1)/2)))^(n+1)).
a(n) ~ n! / (sqrt(5) * A175288^(n+1)). (End)

A385896 Array read by ascending antidiagonals: A(n, k) = k! * [x^k] (1 - sin(n*x))^(-1/n) for n > 0, A(0, k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 11, 16, 1, 1, 1, 5, 19, 57, 61, 1, 1, 1, 6, 29, 136, 361, 272, 1, 1, 1, 7, 41, 265, 1201, 2763, 1385, 1, 1, 1, 8, 55, 456, 3001, 13024, 24611, 7936, 1, 1, 1, 9, 71, 721, 6301, 42125, 165619, 250737, 50521, 1
Offset: 0

Views

Author

Peter Luschny, Jul 20 2025

Keywords

Examples

			Table starts:
  [0] 1, 1, 1,  1,    1,     1,      1, ... [A000012]
  [1] 1, 1, 2,  5,   16,    61,    272, ... [A000111]
  [2] 1, 1, 3, 11,   57,   361,   2763, ... [A001586]
  [3] 1, 1, 4, 19,  136,  1201,  13024, ... [A007788]
  [4] 1, 1, 5, 29,  265,  3001,  42125, ... [A144015]
  [5] 1, 1, 6, 41,  456,  6301, 108576, ... [A230134]
  [6] 1, 1, 7, 55,  721, 11761, 240247, ... [A227544]
  [7] 1, 1, 8, 71, 1072, 20161, 476288, ... [A235128]
  [8] 1, 1, 9, 89, 1521, 32401, 869049, ... [A230114]
     [A000027]  | [A187277] | [A385898].
            [A028387]   [A385897]
.
Seen as a triangle:
  [0] 1;
  [1] 1, 1;
  [2] 1, 1, 1;
  [3] 1, 1, 2,  1;
  [4] 1, 1, 3,  5,   1;
  [5] 1, 1, 4, 11,  16,    1;
  [6] 1, 1, 5, 19,  57,   61,    1;
  [7] 1, 1, 6, 29, 136,  361,  272,    1;
  [8] 1, 1, 7, 41, 265, 1201, 2763, 1385, 1;
		

Crossrefs

Programs

  • Maple
    MAX := 16: ser := n -> series((1 - sin(n*x))^(-1/n), x, MAX):
    A := (n, k) -> if n = 0 then 1 else k!*coeff(ser(n), x, k) fi:
    seq(lprint(seq(A(n, k), k = 0..8)), n = 0..8);
  • Mathematica
    T[n_, k_, m_] := T[n, k, m] =
      Which[
        n <  0 || k <  0, 0,
        n == 0 && k == 0, 1,
        k == 0, T[n - 1, n - 1, m],
        True, T[n, k - 1, m] + m*T[n - 1, n - k - 1, m]
    ];
    A[n_, k_] := T[k, k, n - k];
    Table[A[n, k], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

A(n, k) = T(k, k, n - k) where T(n, k, m) = T(n, k-1, m) + m * T(n-1, n-k-1, m) for k > 0, T(n, 0, m) = T(n-1, n-1, m), and T(0, 0, m) = 1.
Column n is a linear recurrence with kernel [(-1)^k*A135278(n, k), k = 0..n].

A245206 Odd primes p with E_{p-3}(1/4) == 0 (mod p), where E_n(x) denotes the Euler polynomial of degree n.

Original entry on oeis.org

1019
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 13 2014

Keywords

Comments

The conjecture in A245204 asserts that the current sequence contains infinitely many primes.
Our computation shows that the second term should be greater than prime(2600) = 23321.

Examples

			a(1) = 1019 since 1019 is a prime with E_{1019-3}(1/4) == 88*1019 (mod 1019^2).
		

Crossrefs

Programs

  • Mathematica
    rMod[m_,n_]:=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,-n/2]
    n=0;Do[If[rMod[EulerE[Prime[k]-3,1/4],Prime[k]]==0,n=n+1;Print[n," ",Prime[k]]],{k,2,200}]

A343171 Irregular triangle read by rows: coefficients of polynomials xi_n.

Original entry on oeis.org

1, 1, 3, 1, 11, 5, 57, 38, 5, 361, 302, 61, 2763, 2827, 845, 61, 24611, 29607, 11421, 1385, 250737, 347372, 165678, 30108, 1385, 2873041, 4501564, 2551326, 610444, 50521, 36581523, 63967093, 42044902, 12558738, 1578727, 50521
Offset: 0

Views

Author

N. J. A. Sloane, Apr 21 2021

Keywords

Examples

			Triangle begins:
    1;
    1;
    3,   1;
   11,   5;
   57,  38,  5;
  361, 302, 61;
  ...
		

Crossrefs

First column gives A001586.
Cf. A343170.

Programs

  • Mathematica
    xi[0][_] = 1;
    xi[n_][x_] := xi[n, x] = (2n - 1 + (n-1) x) xi[n-1][x] - (1 + x)(4 + 2x)* xi[n-1]'[x];
    Table[CoefficientList[xi[n][x], x], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 21 2021 *)

Extensions

More terms from Jean-François Alcover, Apr 21 2021
Previous Showing 41-50 of 55 results. Next