cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 695 results. Next

A175052 Perfect powers (members of A001597) n where the next larger perfect power is congruent mod 2 to n.

Original entry on oeis.org

4, 25, 32, 121, 128, 196, 225, 343, 484, 1000, 1331, 1728, 2048, 2187, 2197, 2704, 3025, 3375, 4913, 5776, 6859, 7744, 8000, 8100, 9261, 10648, 12167, 13824, 16641, 17424, 19683, 21904, 24389, 26896, 29791, 32768, 35721, 39204, 42849, 50625
Offset: 1

Views

Author

Leroy Quet, Dec 08 2009

Keywords

Examples

			25 (25 = 5^2) are 27 (27 = 3^3) are consecutive perfect powers. Since both are odd, then 25 is in this sequence.
128 (128 = 2^7) and 144 (144 = 12^2) are consecutive perfect powers. Since both are even, then 128 is in this sequence.
		

Crossrefs

Extensions

Extended by Ray Chandler, Dec 10 2009

A285845 Powers (A001597) that are also cyclops numbers (A134808).

Original entry on oeis.org

11025, 19044, 21025, 24025, 32041, 38025, 42025, 47089, 51076, 58081, 59049, 65025, 66049, 67081, 74088, 75076, 87025, 93025, 1110916, 1140624, 1170724, 1190281, 1240996, 1270129, 1290496, 1340964, 1350244, 1380625, 1420864, 1430416, 1490841, 1510441
Offset: 1

Views

Author

Colin Barker, Apr 27 2017

Keywords

Comments

The first term not in A160711 is 74088 = 42^3.
Intersection of A001597 and A134808. - Robert G. Wilson v, Apr 27 2017

Crossrefs

Programs

  • Mathematica
    Select[NestList[If[# == 1, 4, Min@ Table[(Floor[#^(1/k)] + 1)^k, {k, 2, 1 + Floor@ Log2@ #}]] &, 1, 1400], Function[n, And[OddQ@ Length@ #, #[[ Ceiling[Length[#]/2] ]] == 0, DigitCount[n, 10, 0] == 1] &@ IntegerDigits@ n]] (* Michael De Vlieger, Apr 27 2017, after Robert G. Wilson v at A001597 *)
    cyclopsQ[n_Integer, b_: 10] := Module[{digitList = IntegerDigits[n, b], len, pos0s, flag}, len = Length[digitList]; pos0s = Select[Range[len], digitList[[#]] == 0 &]; flag = OddQ[len] && (Length[pos0s] == 1) && (pos0s == {(len + 1)/2}); Return[flag]]; (* from Alonso del Arte in A134808 *) min = 0; max = 1520000; t = Union@ Flatten@ Table[n^expo, {expo, Prime@ Range@ PrimePi@ Log2@ max}, {n, Floor[1 + min^(1/expo)], max^(1/expo)}]; Select[t, cyclopsQ] (* Robert G. Wilson v, Apr 27 2017 *)
  • PARI
    is_cyclops(k) = {
      if(k==0, return(1));
      my(d=digits(k), j);
      if(#d%2==0 || d[#d\2+1]!=0, return(0));
      for(j=1, #d\2, if(d[j]==0, return(0)));
      for(j=#d\2+2, #d, if(d[j]==0, return(0)));
      return(1)}
    L=List(); for(n=1, 100000, if(ispower(n) && is_cyclops(n), listput(L, n))); Vec(L)

A293190 a(n) = |{A001597(n) <= k <= A001597(n+1): 2*k^2-1 is prime}|.

Original entry on oeis.org

3, 4, 1, 4, 6, 1, 1, 2, 9, 8, 6, 7, 7, 1, 3, 6, 8, 11, 8, 1, 6, 5, 11, 14, 4, 2, 12, 14, 16, 8, 6, 15, 13, 9, 16, 16, 15, 15, 13, 10, 6, 16, 21, 16, 11, 4, 8, 22, 23, 17, 20, 7, 8, 23, 18, 21, 4, 23, 13, 1, 4, 24, 28, 24, 24, 24, 8, 14, 23, 24, 25, 1, 24, 15, 2, 21, 29, 26, 24, 35, 27, 25, 31, 30, 31, 30, 24, 4, 30, 30, 32, 30, 35, 31, 13, 13, 33, 31, 29, 31
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 01 2017

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0. In other words, for any perfect powers x^m and y^n with 0 < x^m < y^n, there is an integer z with x^m <= z <= y^n such that 2*z^2 - 1 is prime.
(ii) For any perfect powers x^m and y^n with 0 < x^m < y^n, there is an integer z with x^m <= z <= y^n such that 2*z + 3 (or 20*z^2 + 3) is prime.
(iii) For perfect powers x^m and y^n with 0 < x^m < y^n, there is a practical number q (cf. A005153) with x^m <= q <= y^n, unless x^m = 5^2 and y^n = 3^3, or x^m = 11^2 and y^n = 5^3, or x^m = 22434^2 and y^n = 55^5.
Compare this with the Redmond-Sun conjecture.

Examples

			a(1) = 3 since 2*2^2 - 1, 2*3^2-1 and 2*4^2-1 are all prime but 2*1^2 - 1 is not prime.
a(3) = 1 since A001597(3) = 8, A001597(4) = 9, 2*8^2 - 1 = 127 is prime but 2*9^2 - 1 is composite.
a(6) = 1 since A001597(6) = 25, A001597(7) = 27, 2*25^2 - 1 = 1249 is prime but 2*26^2 - 1 and 2*27^2 - 1 are composite.
a(14) = 1 since A001597(14) = 121, A001597(15) = 125, 2*125^2
- 1 = 31249 is prime but 2*k^2 - 1 is composite for every k = 121, 122, 123, 124.
a(361) = 1 since A001597(361) = 46^3 = 97336, A001597(362) = 312^2 = 97344, and k = 97342 is the only number among 97336,...,97344 with 2*k^2 - 1 prime.
		

Crossrefs

Programs

  • Mathematica
    n=1;m=1;Do[Do[If[IntegerQ[k^(1/Prime[i])],Print[n," ",Sum[Boole[PrimeQ[2j^2-1]],{j,m,k}]];n=n+1;m=k;Goto[aa]],{i,1,PrimePi[Log[2,k]]}];Label[aa],{k,2,6561}]

A362422 Number of partitions of n into 2 perfect powers (A001597).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 1, 0, 0, 2, 2, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 2, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 2, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 2, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2023

Keywords

Crossrefs

Programs

A362423 Number of partitions of n into 3 perfect powers (A001597).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 1, 0, 2, 2, 2, 2, 1, 2, 1, 0, 2, 3, 3, 2, 2, 3, 2, 1, 3, 4, 3, 2, 4, 4, 1, 1, 3, 4, 2, 3, 3, 3, 3, 1, 3, 3, 4, 3, 3, 4, 3, 2, 2, 4, 5, 3, 4, 4, 2, 1, 4, 5, 2, 3, 3, 5, 1, 2, 4, 5, 4, 2, 4, 2, 4, 0, 3, 5, 5, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2023

Keywords

Crossrefs

Programs

A362428 a(n) is the least positive integer that can be expressed as the sum of one or more consecutive perfect powers (A001597) in exactly n ways, or -1 if no such integer exists.

Original entry on oeis.org

1, 25, 441
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 19 2023

Keywords

Comments

a(4) > 1.5 * 10^8.
No further terms < 2.8*10^14. - Michael S. Branicky, Apr 20 2023

Examples

			For n = 2: 25 = 25 = 9 + 16.
For n = 3: 441 = 441 = 216 + 225 = 128 + 144 + 169.
		

Crossrefs

Cf. A001597.

A365295 a(n) is the least positive integer that can be expressed as the sum of two distinct perfect powers (A001597) in exactly n ways.

Original entry on oeis.org

1, 5, 17, 129, 468, 1025, 2628, 12025, 32045, 27625, 138125, 430625, 204425, 160225, 2010025, 2348125, 801125, 1743625, 2082925, 4978025, 4005625, 12325625, 30525625, 73046025, 5928325, 13287625, 46437625, 45177925, 35409725, 120737825, 52073125, 66438125, 29641625, 32846125, 956974625
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2023

Keywords

Examples

			For n = 2: a(2) = 17 = 1^2 + 2^4 = 2^3 + 3^2.
a(6) = 2628 via 3^3 + 51^2 = 2^7 + 50^2 = 18^2 + 48^2 = 21^2 + 3^7 = 2^9 + 46^2 = 30^2 + 12^3. - _David A. Corneth_, Sep 09 2023
		

Crossrefs

Programs

  • PARI
    upto(n) = {n = (sqrtint(n) + 1)^2; my(v = vector(n), pows = List([1]), r = -1, res = []); for(j = 2, logint(n, 2), for(i = 2, sqrtnint(n, j), listput(pows, i^j))); pows = Set(pows); for(i = 1, #pows - 1, j = i+1; c = pows[i] + pows[j]; while(c <= n, v[c]++; j++; c = pows[i] + pows[j])); for(i = 1, #v, c = v[i]+1; if(c > #res, res = concat(res, vector(c - #res, j, oo))); if(i < res[c], res[c] = i)); res} \\ David A. Corneth, Sep 08 2023
    
  • PARI
    \\ see link
    
  • Python
    # see link

Extensions

a(8)-a(10) from David Consiglio, Jr., Sep 08 2023
a(9) corrected and a(11)-a(34) from Hugo Pfoertner, Sep 10 2023

A373116 Fibonacci numbers whose digits product is a positive perfect power (A001597).

Original entry on oeis.org

1, 8, 55, 144, 4181, 17711, 196418, 1346269, 259695496911122585
Offset: 1

Views

Author

Gonzalo Martínez, May 25 2024

Keywords

Comments

Since the product of the digits of Fibonacci(k) is required to be positive, Fibonacci(k) does not have zero as a digit. For this reason this list is probably finite, since it is conjectured that there are only finitely many Fibonacci numbers that do not contain the digit zero (see A076564). If the conjecture is true, the largest number possessing the property would be Fibonacci(85) = 259695496911122585 whose digit product is 194400^2.
Unlike A373049, here the product uses all the digits of Fibonacci(k).

Examples

			196418 is a term, because Fibonacci(27) = 196418 and the product of its digits is 1*9*6*4*1*8 = 12^3.
		

Crossrefs

Programs

  • Mathematica
    powQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; Select[Fibonacci[Range[2, 100]], powQ[Times @@ IntegerDigits[#]] &] (* Amiram Eldar, May 25 2024 *)

A380564 Triangle read by rows q(b1,b2) with 1A001597), and b1 is m^j, 0

Original entry on oeis.org

9, 0, 265, 5, 117032, 2123333591, 7, 44, 291720, 10757067, 57, 449, 16879, 18042, 19032324921, 0, 332930, 0, 2180306, 174631931663663360, 51981761666123, 9, 0, 93, 839, 407917265, 50732175, 197761284636128964, 10, 10, 133302001, 124343, 155133423353
Offset: 1

Views

Author

Keywords

Comments

a(703) has over 1000 digits, and so it is not included in the b-file.

Examples

			a(1) = floor(A380599);
a(3) = q(3,4) = 265_10 = 10021_4 = 100211_3;
a(5) = q(4,5) = 117032_10 = 12221112_5 = 12221112112_3;
a(29) = floor(A379651); etc.
Lower triangle of an array:
   \b1  2       3           4         5                   6               7
  b2\
   3|   9;
   4|   0,    265;
   5|   5, 117032, 2123333591;
   6|   7,     44,     291720, 10757067;
   7|  57,    449,      16879,    18042,        19032324921;
   8|   0, 332930,          0,  2180306, 174631931663663360, 51981761666123;
       ...
		

Crossrefs

A074321 Numbers n such that n-th perfect power + n is prime: n + A001597(n) is prime.

Original entry on oeis.org

1, 3, 4, 6, 10, 13, 24, 25, 34, 37, 49, 50, 52, 73, 74, 93, 106, 109, 127, 142, 160, 177, 178, 193, 208, 212, 228, 234, 235, 250, 253, 262, 275, 276, 279, 281, 282, 284, 298, 333, 336, 337, 339, 360, 385, 402, 405, 407, 417, 442, 468, 474, 478, 480, 487
Offset: 1

Views

Author

Zak Seidov, Oct 11 2002

Keywords

Comments

Primes of the form n + A001597(n) in A075781.

Examples

			n=3: pp(3)+3=8+3=11 is prime.
		

Crossrefs

Previous Showing 61-70 of 695 results. Next