cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 85 results. Next

A074475 a(n) = Sum_{j=0..floor(n/2)} T(2*j + q), where T(n) are generalized tribonacci numbers (A001644) and q = n - 2*floor(n/2).

Original entry on oeis.org

3, 1, 6, 8, 17, 29, 56, 100, 187, 341, 630, 1156, 2129, 3913, 7200, 13240, 24355, 44793, 82390, 151536, 278721, 512645, 942904, 1734268, 3189819, 5866989, 10791078, 19847884, 36505953, 67144913, 123498752, 227149616, 417793283
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 23 2002

Keywords

Comments

a(n) is the convolution of T(n) with the sequence (1,0,1,0,1,0,...).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3+x)/(1-2*x^2-2*x^3-x^4) )); // G. C. Greubel, Apr 21 2019
    
  • Mathematica
    CoefficientList[Series[(3+x)/(1-2*x^2-2*x^3-x^4), {x, 0, 40}], x]
    LinearRecurrence[{0,2,2,1},{3,1,6,8},40] (* Harvey P. Dale, Jul 08 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec((3+x)/(1-2*x^2-2*x^3-x^4)) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    ((3+x)/(1-2*x^2-2*x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(n) = 2*a(n-2) + 2*a(n-3) + a(n-4), a(0)=3, a(1)=1, a(2)=6, a(3)=8.
G.f.: (3+x)/(1-2*x^2-2*x^3-x^4).

A075092 Sum of generalized tribonacci numbers (A001644) and reflected generalized tribonacci numbers (A073145).

Original entry on oeis.org

6, 0, 2, 12, 6, 20, 50, 56, 134, 264, 402, 836, 1542, 2652, 5154, 9392, 16902, 31824, 58082, 106172, 197126, 360932, 662994, 1223784, 2245766, 4130520, 7606770, 13976436, 25711622, 47310252, 86978370, 160002656, 294324230, 541249952
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 31 2002

Keywords

Comments

Conjecture: a(n) >= 0.
For n > 2, a(n) is the number of cyclic sequences (q1, q2, ..., qn) consisting of zeros, ones and twos such that each triple contains 0 and 1 at least once, provided the positions of the zeros and ones are fixed on a circle. For example, a(5)=20 because only the sequences (00101), (01001), (01010), (01011), (01012), (01021), (01101), (01201), (02101), (20101) and those obtained from them by exchanging 0 and 1 contain 0 and 1 in each triple (including triples q4, q5, q1 and q5, q1, q2). For n = 1, 2 the statement is still true provided we allow the sequence to wrap around itself on a circle. E.g., a(2) = 2 since only sequences 01 and 10 can be wrapped so one obtains (010) and (101), respectively. - Wojciech Florek, Nov 25 2021

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6) ));  // G. C. Greubel, Apr 13 2019
    
  • Mathematica
    CoefficientList[Series[(6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6), {x, 0, 40}], x]
  • PARI
    my(x='x+O('x^40)); Vec((6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6)) \\ G. C. Greubel, Apr 13 2019
    
  • Sage
    ((6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 13 2019

Formula

a(n) = a(n-2) + 4*a(n-3) + a(n-4) - a(n-6), a(0)=6, a(1)=0, a(2)=2, a(3)=12, a(4)=6, a(5)=20.
G.f.: (6 - 4*x^2 - 12*x^3 - 2*x^4)/(1 - x^2 - 4*x^3 - x^4 + x^6).

A075536 a(n) = ((1+(-1)^n)*T(n+1) + (1-(-1)^n)*S(n))/2, where T(n) = tribonacci numbers A000073, S(n) = generalized tribonacci numbers A001644.

Original entry on oeis.org

0, 1, 1, 7, 4, 21, 13, 71, 44, 241, 149, 815, 504, 2757, 1705, 9327, 5768, 31553, 19513, 106743, 66012, 361109, 223317, 1221623, 755476, 4132721, 2555757, 13980895, 8646064, 47297029, 29249425, 160004703, 98950096, 541292033, 334745777
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 23 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Maple
    A075536 := proc(n)
        if type(n,'even') then
            A000073(n+1) ;
        else
            A001644(n) ;
        end if;
    end proc:
    seq(A075536(n),n=0..80) ; # R. J. Mathar, Aug 05 2021
  • Mathematica
    CoefficientList[Series[(x+x^2+4x^3+x^4-x^5)/(1-3x^2-x^4-x^6), {x, 0, 40}], x]
    LinearRecurrence[{0,3,0,1,0,1},{0,1,1,7,4,21},40] (* Harvey P. Dale, Jul 10 2012 *)
  • PARI
    my(x='x+O('x^40)); concat([0], Vec(x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6))) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    (x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(2n) = A073717(n) = A000073(2n+1).
a(2n+1) = A001644(2n+1).
a(n) = 3*a(n-2) + a(n-4) + a(n-6), a(0)=0, a(1)=1, a(2)=1, a(3)=7, a(4)=4, a(5)=21.
O.g.f.: x*(1 + x + 4*x^2 + x^3 - x^4)/(1 - 3*x^2 - x^4 - x^6).

Extensions

Index in definition corrected. - R. J. Mathar, Aug 05 2021

A105285 Indices of Lucas 3-step numbers A001644 which have a nontrivial divisor in common with index.

Original entry on oeis.org

6, 15, 18, 21, 35, 39, 44, 45, 54, 55, 57, 78, 80, 84, 90, 93, 96, 117, 120, 123, 132, 133, 135, 140, 147, 154, 156, 162, 171, 174, 195, 201, 210, 213, 234, 235, 240, 245, 247, 249, 252, 259, 264, 273, 275, 279, 286, 288, 290, 291, 295, 299, 312, 318, 323, 327
Offset: 1

Views

Author

Jonathan Vos Post, Apr 25 2005

Keywords

Comments

Extension by T. D. Noe. Wanted: closed-form formula for this as exists for Fibonacci and Lucas numbers. See also A105762 (prime Lucas 3-step numbers).

Examples

			gcd(6, A001644(6)) = gcd(6,39) = 3,
gcd(21, A001644(21)) = gcd(21,361109) = 7.
		

Crossrefs

Programs

  • Mathematica
    m=300; s = LinearRecurrence[{1, 1, 1}, {3, 1, 3}, m+1]; Select[Range[m], !CoprimeQ[#, s[[#+1]]] &] (* Amiram Eldar, Sep 05 2019 *)

Formula

gcd(a(n), A001644(a(n))) > 1.

Extensions

More terms from Amiram Eldar, Sep 05 2019

A105762 Primes in A001644 (the Lucas 3-step numbers).

Original entry on oeis.org

3, 7, 11, 71, 131, 241, 443, 1499, 196331, 86992799, 541292033, 292997064989357251, 129824812729295169371, 238785058551151434437, 5026368970977284897651, 105803877284856287511991
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Crossrefs

Cf. A104576 (indices of prime Lucas 3-step numbers).

Programs

  • Mathematica
    a={-1, -1, 3}; lst={}; Do[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s; If[PrimeQ[s], AppendTo[lst, s]], {n, 1000}]; lst

Formula

a(n) = A001644(A104576(n)). - Arthur O'Dwyer, Jul 31 2024

Extensions

Name clarified by Arthur O'Dwyer, Jul 31 2024

A106789 Sum of two consecutive squares of Lucas 3-step numbers (A001644).

Original entry on oeis.org

10, 10, 58, 170, 562, 1962, 6562, 22202, 75242, 254330, 860474, 2911226, 9848050, 33316090, 112707970, 381286954, 1289885834, 4363653034, 14762129274, 49939929610, 168945571442, 571538767370, 1933501811618, 6540989771354
Offset: 0

Views

Author

Jonathan Vos Post, May 16 2005

Keywords

Comments

A106729 is sum of two consecutive squares of Lucas numbers (A001254), for which L(n)^2 + L(n+1)^2 = 5*{F(n)^2 + F(n+1)^2} = 5*A001519(n). Sum of two consecutive squares of Lucas 3-step numbers can be expressed in terms of tribonacci numbers, but not quite as neatly, as derived from the identity A001644(n) = T(n) + 2*T(n-1) + 3*T(n-2) = 3*T(n+1) - 2*T(n) - T(n-1) where the tribonacci numbers T(n) = A000073(n).

Examples

			a(0) = A001644(0)^2 + A001644(1)^2 = 3^2 + 1^2 = 9 + 1 = 10.
a(1) = A001644(1)^2 + A001644(2)^2 = 1^2 + 3^2 = 1 + 9 = 10.
a(2) = A001644(2)^2 + A001644(3)^2 = 3^2 + 7^2 = 9 + 49 = 58.
a(3) = A001644(3)^2 + A001644(4)^2 = 7^2 + 11^2 = 49 + 121 = 170 = 13^2 + 1.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2-6*x^3+x^4+x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Mathematica
    CoefficientList[Series[2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2 -6*x^3+x^4+x^6), {x,0,40}], x] (* G. C. Greubel, Apr 21 2019 *)
    Total/@Partition[LinearRecurrence[{1,1,1},{3,1,3},40]^2,2,1] (* Harvey P. Dale, Apr 03 2022 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2-6*x^3+x^4+x^6)) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    (2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2-6*x^3+x^4+x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(n) = A001644(n)^2 + A001644(n+1)^2.
G.f.: 2*(5 - 5*x + 4*x^2 - 18*x^3 - x^4 - 5*x^5)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)).

A073748 a(n) = S(n)*S(n-1), where S(n) are the generalized tribonacci numbers A001644.

Original entry on oeis.org

-3, 3, 3, 21, 77, 231, 819, 2769, 9301, 31571, 106763, 361045, 1221685, 4132743, 13980747, 47297217, 160004685, 541291715, 1831178355, 6194830005, 20956959933, 70896891079, 239842458947, 811381229009, 2744883043045, 9285872805715, 31413882695739, 106272403946805
Offset: 0

Views

Author

Maio Catalani (mario.catalani(AT)unito.it), Aug 08 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (-3+9*x+6*x^2+24*x^3+5*x^4-x^5)/(1-2*x-3*x^2-6*x^3 +x^4+x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Mathematica
    CoefficientList[Series[(-3+9*x+6*x^2+24*x^3+5*x^4-x^5)/(1-2*x-3*x^2-6*x^3 +x^4+x^6), {x, 0, 30}], x]
    Join[{-3},Times@@@Partition[LinearRecurrence[{1,1,1},{3,1,3},30],2,1]] (* or *) LinearRecurrence[{2,3,6,-1,0,-1},{-3,3,3,21,77,231},30] (* Harvey P. Dale, Nov 18 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((-3+9*x+6*x^2+24*x^3+5*x^4-x^5)/(1-2*x-3*x^2-6*x^3 +x^4+x^6)) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    ((-3+9*x+6*x^2+24*x^3+5*x^4-x^5)/(1-2*x-3*x^2-6*x^3 +x^4+x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(n) = S(2*n-1) + C(n-1) - C(n-2), where S(n) is A001644, C(n) is A073145.
G.f.: (-3 + 9*x + 6*x^2 + 24*x^3 + 5*x^4 - x^5)/(1 - 2*x - 3*x^2 - 6*x^3 + x^4 + x^6).
a(0)=-3, a(1)=3, a(2)=3, a(3)=21, a(4)=77, a(5)=231, a(n) = 2*a(n-1) + 3*a(n-2) + 6*a(n-3) - a(n-4) - a(n-6). - Harvey P. Dale, Nov 18 2013

A073782 a(n) = Sum_{k=0..n} S(k)*S(n-k), convolution of S=A001644 with itself.

Original entry on oeis.org

9, 6, 19, 48, 89, 190, 391, 784, 1577, 3142, 6219, 12256, 24041, 46974, 91471, 177568, 343753, 663814, 1278979, 2459152, 4719417, 9041470, 17294039, 33030320, 62999145, 120006214, 228327099, 433939904, 823854793, 1562602238
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 11 2002

Keywords

Crossrefs

Cf. A001644.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (3-2*x-x^2)^2/(1-x-x^2-x^3)^2 )); // G. C. Greubel, Apr 12 2019
    
  • Mathematica
    CoefficientList[Series[(3-2x-x^2)^2/(1-x-x^2-x^3)^2, {x, 0, 30}], x]
  • PARI
    my(x='x+O('x^30)); Vec((3-2*x-x^2)^2/(1-x-x^2-x^3)^2) \\ G. C. Greubel, Apr 12 2019
    
  • Sage
    ((3-2*x-x^2)^2/(1-x-x^2-x^3)^2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 12 2019

Formula

G.f.: (3-2*x-x^2)^2/(1-x-x^2-x^3)^2.

A074582 a(n) = S(3n), where S(n) is the generalized tribonacci sequence A001644.

Original entry on oeis.org

3, 7, 39, 241, 1499, 9327, 58035, 361109, 2246915, 13980895, 86992799, 541292033, 3368061131, 20956960551, 130399710235, 811381230021, 5048627019523, 31413882696791, 195465425009943, 1216237188605169, 7567747077883259
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 24 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (3-14*x+5*x^2)/(1-7*x+5*x^2-x^3) )); // G. C. Greubel, Apr 13 2019
    
  • Mathematica
    CoefficientList[Series[(3-14*x+5*x^2)/(1-7*x+5*x^2-x^3), {x, 0, 30}], x]
    LinearRecurrence[{7,-5,1},{3,7,39},30] (* Harvey P. Dale, Mar 24 2022 *)
  • PARI
    my(x='x+O('x^30)); Vec((3-14*x+5*x^2)/(1-7*x+5*x^2-x^3)) \\ G. C. Greubel, Apr 13 2019
    
  • Sage
    ((3-14*x+5*x^2)/(1-7*x+5*x^2-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 13 2019

Formula

a(n) = 7*a(n-1) - 5*a(n-2) + a(n-3), a(0)=3, a(1)=7, a(2)=39.
G.f.: (3-14*x+5*x^2)/(1-7*x+5*x^2-x^3).

A075418 Sum of generalized tribonacci numbers A001644 and inverted tribonacci numbers A075298.

Original entry on oeis.org

4, 2, -2, 12, 12, 10, 54, 68, 108, 282, 422, 772, 1604, 2674, 5006, 9580, 16884, 31506, 58606, 105948, 196508, 362298, 662022, 1222772, 2249116, 4127210, 7605718, 13984148, 25701652, 47311458, 86994846, 159975004, 294336612, 541281698, 995529822, 1831291692, 3367998380, 6194717674
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 14 2002

Keywords

Comments

It seems that aside from a(2) the sequence is nonnegative.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2-4*x^3-x^4+x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Mathematica
    CoefficientList[Series[(4+2x-6x^2-6x^3+2x^4+4x^5)/(1-x^2-4x^3-x^4+x^6), {x, 0, 40}], x]
  • PARI
    my(x='x+O('x^40)); Vec((4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2 -4*x^3-x^4+x^6)) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    ((4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2-4*x^3-x^4+x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(n) = a(n-2) + 4*a(n-3) + a(n-4) - a(n-6), a(0)=4, a(1)=2, a(2)=-2, a(3)=12, a(4)=12, a(5)=10.
O.g.f.: (4 + 2*x - 6*x^2 - 6*x^3 + 2*x^4 + 4*x^5)/(1 - x^2 - 4*x^3 - x^4 + x^6).
Previous Showing 11-20 of 85 results. Next