cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 144 results. Next

A119262 Number of B-trees of order infinity with n leaves, where a(n) = Sum_{k=1..floor(n/2)} a(k)*C(n-k-1,n-2*k) for n >= 2, with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 5, 8, 14, 25, 46, 85, 158, 294, 548, 1022, 1908, 3567, 6683, 12556, 23669, 44781, 85046, 162122, 310157, 595322, 1146057, 2212004, 4278908, 8292738, 16097018, 31286456, 60873574, 118543329, 231009934, 450434739, 878687665
Offset: 0

Views

Author

Paul D. Hanna, May 11 2006

Keywords

Comments

A B-tree of order m is an ordered tree such that every node has at most m children, the root has at least 2 children, every node except the root has 0 or at least m/2 children, all end-nodes are at the same level. This sequence is the limit of the B-trees as m --> infinity.
Starting with offset 2, the eigensequence of triangle A011973. - Gary W. Adamson, Jul 08 2012
Number of balanced series-reduced rooted plane trees with n leaves. A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root. - Gus Wiseman, Oct 07 2018

Examples

			A(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 8*x^7 + 14*x^8 + ...
Series form:
A(x) = x + x^2/(1-x) + x^4/((1-x)*((1-x)-x^2)) + x^8/((1-x)*((1-x)-x^2)*((1-x)*((1-x)-x^2)-x^4)) + ... + x^(2^n)/D(n,x) + x^(2^(n+1))/[D(n,x)*(D(n,x)-x^(2^n))] + ...
Terms also satisfy the series:
x = x*(1-x) + x^2*(1-x^2)/(1+x) + x^3*(1-x^3)/(1+x)^2 + 2*x^4*(1-x^4)/(1+x)^3 + 3*x^5*(1-x^5)/(1+x)^4 + 5*x^6*(1-x^6)/(1+x)^5 + 8*x^7*(1-x^7)/(1+x)^6 + 14*x^8*(1-x^8)/(1+x)^7 + 25*x^9*(1-x^9)/(1+x)^8 + ... + a(n)*x^n*(1-x^n)/(1+x)^(n-1) + ...
From _Gus Wiseman_, Oct 07 2018: (Start)
The a(1) = 1 through a(7) = 8 balanced series-reduced rooted plane trees:
  o  (oo)  (ooo)  (oooo)      (ooooo)      (oooooo)        (ooooooo)
                  ((oo)(oo))  ((oo)(ooo))  ((oo)(oooo))    ((oo)(ooooo))
                              ((ooo)(oo))  ((ooo)(ooo))    ((ooo)(oooo))
                                           ((oooo)(oo))    ((oooo)(ooo))
                                           ((oo)(oo)(oo))  ((ooooo)(oo))
                                                           ((oo)(oo)(ooo))
                                                           ((oo)(ooo)(oo))
                                                           ((ooo)(oo)(oo))
(End)
		

Crossrefs

Cf. A092684 (similar recurrence); B-trees: A014535 (order 3), A037026 (order 4), A058521 (order 5).
Cf. A011973.

Programs

  • Mathematica
    nn=38;f[x_]:=Sum[a[n]x^n,{n,0,nn}];a[0]=0;sol=SolveAlways[0==Series[f[x]-x-f[x^2/(1-x)],{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol  (* Geoffrey Critzer, Mar 28 2013 *)
  • PARI
    a(n)=if(n==0,0,if(n==1,1,sum(k=1,n\2,a(k)*binomial(n-k-1,n-2*k))))
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    /* From: A(x) = x + A(x^2/(1-x)) */
    {a(n)=local(A=x);for(i=1,n,A=x+subst(A,x,x^2/(1-x+x*O(x^n))));polcoeff(A,n)}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    /* From: x = Sum_{n>=1} a(n)*x^n*(1-x^n)/(1+x)^(n-1) */
    a(n)=if(n==1, 1, -polcoeff(sum(k=1, n-1, a(k)*x^k*(1-x^k)/(1+x+x*O(x^n))^(k-1)), n))
    for(n=1, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 31 2013

Formula

G.f. A(x) satisfies: A(x) = x + A(x^2/(1-x)).
G.f.: Sum_{n>=0} x^(2^n)/D(n,x) where D(0,x)=1, D(n+1,x) = D(n,x)*[D(n,x) - x^(2^n)].
G.f.: x = Sum_{n>=1} a(n) * x^n * (1-x^n) / (1+x)^(n-1). - Paul D. Hanna, Jul 31 2013
Conjecture: Let M_n be an n X n matrix whose elements are m_ij = 0 for i < j - 1, m_ij = -1 for i = j - 1, and m_ij = binomial(i - j, n - i) otherwise. Then a(n + 1) = Det(M_n). - Benedict W. J. Irwin, Apr 19 2017

A120803 Number of series-reduced balanced trees with n leaves.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 8, 9, 16, 20, 37, 47, 80, 111, 183, 256, 413, 591, 940, 1373, 2159, 3214, 5067, 7649, 12054, 18488, 29203, 45237, 71566, 111658, 176710, 276870, 437820, 687354, 1085577, 1705080, 2688285, 4221333, 6644088, 10425748
Offset: 1

Views

Author

Keywords

Comments

In other words, rooted trees with all leaves at the same level and no node having exactly one child; the order of children is not significant.

Examples

			From _Gus Wiseman_, Oct 07 2018: (Start)
The a(10) = 16 series-reduced balanced rooted trees:
  (oooooooooo)
  ((ooooo)(ooooo))
  ((oooo)(oooooo))
  ((ooo)(ooooooo))
  ((oo)(oooooooo))
  ((ooo)(ooo)(oooo))
  ((oo)(oooo)(oooo))
  ((oo)(ooo)(ooooo))
  ((oo)(oo)(oooooo))
  ((oo)(oo)(ooo)(ooo))
  ((oo)(oo)(oo)(oooo))
  ((oo)(oo)(oo)(oo)(oo))
  (((oo)(ooo))((oo)(ooo)))
  (((oo)(oo))((ooo)(ooo)))
  (((oo)(oo))((oo)(oooo)))
  (((oo)(oo))((oo)(oo)(oo)))
(End)
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(u=vector(n), v=vector(n)); u[1]=1; while(u, v+=u; u=EulerT(u)-u); v} \\ Andrew Howroyd, Oct 26 2018

Formula

Let s_0(n) = 1 if n = 1, 0 otherwise; s_{k+1}(n) = EULER(s_k)(n) - s_k(n), where EULER is the Euler transform. Then a_n = sum_k s_k(n). (s_k(n) is the number of such trees of height k.) Note that s_k(n) = 0 for n < 2^k.

A320154 Number of series-reduced balanced rooted trees whose leaves form a set partition of {1,...,n}.

Original entry on oeis.org

1, 2, 5, 18, 92, 588, 4328, 35920, 338437, 3654751, 45105744, 625582147, 9539374171, 157031052142, 2757275781918, 51293875591794, 1007329489077804, 20840741773898303, 453654220906310222, 10380640686263467204, 249559854371799622350, 6301679967177242849680
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches, and balanced if all leaves are the same distance from the root.
Also the number of balanced phylogenetic rooted trees on n distinct labels.

Examples

			The a(1) = 1 through a(4) = 18 rooted trees:
  (1)  (12)      (123)        (1234)
       ((1)(2))  ((1)(23))    ((1)(234))
                 ((2)(13))    ((12)(34))
                 ((3)(12))    ((13)(24))
                 ((1)(2)(3))  ((14)(23))
                              ((2)(134))
                              ((3)(124))
                              ((4)(123))
                              ((1)(2)(34))
                              ((1)(3)(24))
                              ((1)(4)(23))
                              ((2)(3)(14))
                              ((2)(4)(13))
                              ((3)(4)(12))
                              ((1)(2)(3)(4))
                              (((1)(2))((3)(4)))
                              (((1)(3))((2)(4)))
                              (((1)(4))((2)(3)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    gug[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[gug/@mtn]],{mtn,Select[sps[m],Length[#]>1&]}],m];
    Table[Length[Select[gug[Range[n]],SameQ@@Length/@Position[#,_Integer]&]],{n,9}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n,k)={my(u=vector(n), v=vector(n)); u[1]=k; u=EulerT(u); while(u, v+=u; u=EulerT(u)-u); v}
    seq(n)={my(M=Mat(vectorv(n,k,b(n,k)))); vector(n, k, sum(i=1, k, binomial(k,i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018

Extensions

Terms a(9) and beyond from Andrew Howroyd, Oct 26 2018

A001679 Number of series-reduced rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 0, 2, 2, 4, 6, 12, 20, 39, 71, 137, 261, 511, 995, 1974, 3915, 7841, 15749, 31835, 64540, 131453, 268498, 550324, 1130899, 2330381, 4813031, 9963288, 20665781, 42947715, 89410092, 186447559, 389397778, 814447067, 1705775653, 3577169927
Offset: 0

Views

Author

Keywords

Comments

Also known as homeomorphically irreducible rooted trees, or rooted trees without nodes of degree 2.
A rooted tree is lone-child-avoiding if no vertex has exactly one child, and topologically series-reduced if no vertex has degree 2. This sequence counts unlabeled topologically series-reduced rooted trees with n vertices. Lone-child-avoiding rooted trees with n - 1 vertices are counted by A001678. - Gus Wiseman, Jan 21 2020

Examples

			G.f. = 1 + x + x^2 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 12*x^8 + 20*x^9 + ...
From _Gus Wiseman_, Jan 21 2020: (Start)
The a(1) = 1 through a(8) = 12 unlabeled topologically series-reduced rooted trees with n nodes (empty n = 3 column shown as dot) are:
  o  (o)  .  (ooo)   (oooo)   (ooooo)    (oooooo)    (ooooooo)
             ((oo))  ((ooo))  ((oooo))   ((ooooo))   ((oooooo))
                              (oo(oo))   (oo(ooo))   (oo(oooo))
                              ((o(oo)))  (ooo(oo))   (ooo(ooo))
                                         ((o(ooo)))  (oooo(oo))
                                         ((oo(oo)))  ((o(oooo)))
                                                     ((oo(ooo)))
                                                     ((ooo(oo)))
                                                     (o(oo)(oo))
                                                     (oo(o(oo)))
                                                     (((oo)(oo)))
                                                     ((o(o(oo))))
(End)
		

References

  • D. G. Cantor, personal communication.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Eq. (3.3.9).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial term, same as A059123.
Cf. A000055 (trees by nodes), A000014 (homeomorphically irreducible trees by nodes), A000669 (homeomorphically irreducible planted trees by leaves), A000081 (rooted trees by nodes).
Cf. A246403.
The labeled version is A060313, with unrooted case A005512.
Matula-Goebel numbers of these trees are given by A331489.
Lone-child-avoiding rooted trees are counted by A001678(n + 1).

Programs

  • Maple
    with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}:
    G001678 := (convert(gfseries(sys,unlabeled,x)[S(x)], polynom)) * x^2: G0temp := G001678 + x^2:
    G001679 := G0temp / x + G0temp - (G0temp^2+eval(G0temp,x=x^2))/(2*x): A001679 := 0,seq(coeff(G001679,x^i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
    # adapted for Maple 16 or higher version by Vaclav Kotesovec, Jun 26 2014
  • Mathematica
    terms = 37; (* F = G001678 *) F[] = 0; Do[F[x] = (x^2/(1 + x))*Exp[Sum[ F[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms + 1}];
    G[x_] = 1 + ((1 + x)/x)*F[x] - (F[x]^2 + F[x^2])/(2*x) + O[x]^terms;
    CoefficientList[G[x], x] (* Jean-François Alcover, Jan 12 2018 *)
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],Length[#]!=2&&FreeQ[Z@@#,{}]&]],{n,15}] (* _Gus Wiseman, Jan 21 2020 *)
  • PARI
    {a(n) = local(A); if( n<3, n>0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (1 + x)*A - x*(A^2 + subst(A, x, x^2)) / 2, n))};

Formula

G.f. = 1 + ((1+x)*f(x) - (f(x)^2+f(x^2))/2)/x where f(x) is g.f. for A001678 (homeomorphically irreducible planted trees by nodes).
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711... and c = 0.4213018528699249210965028... . - Vaclav Kotesovec, Jun 26 2014
For n > 1, this sequence counts lone-child-avoiding rooted trees with n nodes and more than two branches, plus lone-child-avoiding rooted trees with n - 1 nodes. So for n > 1, a(n) = A331488(n) + A001678(n). - Gus Wiseman, Jan 21 2020

Extensions

Additional comments from Michael Somos, Oct 10 2003

A316655 Number of series-reduced rooted trees whose leaves span an initial interval of positive integers with multiplicities the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 5, 4, 12, 9, 12, 17, 33, 29, 44, 26, 90, 90, 261, 68, 168, 93, 766, 144, 197, 307, 575, 269, 2312, 428, 7068, 236, 625, 1017, 863, 954, 21965, 3409, 2342, 712
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of sets of trees begins:
1:
2: 1
3: (11)
4: (12)
5: (1(11)), (111)
6: (1(12)), (2(11)), (112)
7: (1(1(11))), (1(111)), ((11)(11)), (11(11)), (1111)
8: (1(23)), (2(13)), (3(12)), (123)
9: (1(1(22))), (1(2(12))), (1(122)), (2(1(12))), (2(2(11))), (2(112)), ((11)(22)), ((12)(12)), (11(22)), (12(12)), (22(11)), (1122)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Length[gro[Flatten[MapIndexed[Table[#2,{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]],{n,20}]

Formula

a(prime(n)) = A000669(n).
a(2^n) = A000311(n).

Extensions

a(37)-a(40) from Robert Price, Sep 13 2018

A316694 Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 13, 28, 62, 143, 338, 804, 1948, 4789, 11886, 29796, 75316, 191702, 491040, 1264926, 3274594, 8514784, 22229481, 58243870
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2018

Keywords

Comments

A rooted tree is lone-child-avoiding if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other (unequal) branch of the same root. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(7) = 28 rooted trees:
  7,
  (16),
  (25),
  (1(15)),
  (34),
  (1(24)), (2(14)), (4(12)), (124),
  (1(1(14))),
  (3(13)),
  (2(23)),
  (1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), (12(13)), (13(12)),
  (1(1(1(13)))),
  (2(2(12))),
  (1(1(2(12)))), (1(2(1(12)))), (1(12(12))), (2(1(1(12)))), (12(1(12))),
  (1(1(1(1(12))))).
Missing from this list but counted by A300660 are ((12)(13)) and ((12)(1(12))).
		

Crossrefs

The semi-identity tree version is A212804.
Not requiring local disjointness gives A300660.
The non-identity tree version is A316696.
This is the case of A331686 where all leaves are singletons.
Rooted identity trees are A004111.
Locally disjoint rooted identity trees are A316471.
Lone-child-avoiding locally disjoint rooted trees are A331680.
Locally disjoint enriched identity p-trees are A331684.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,disjointQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(21)-a(23) from Robert Price, Sep 16 2018
Updated with corrected terminology by Gus Wiseman, Feb 06 2020

A316697 Number of series-reduced locally disjoint rooted trees with n unlabeled leaves.

Original entry on oeis.org

1, 1, 2, 5, 10, 24, 49, 112, 241, 548, 1218, 2839, 6547, 15572, 37179, 90555, 222065, 552576, 1384820, 3506475, 8936121, 22941280
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other (unequal) branch of the same root.

Examples

			The a(5) = 10 trees:
  (o(o(o(oo))))
  (o(o(ooo)))
  (o((oo)(oo)))
  (o(oo(oo)))
  (o(oooo))
  (oo(o(oo)))
  (oo(ooo))
  (o(oo)(oo))
  (ooo(oo))
  (ooooo)
Missing from this list but counted by A000669 are ((oo)(o(oo))) and ((oo)(ooo)).
		

Crossrefs

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    nms[n_]:=nms[n]=If[n==1,{{1}},Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],disjointQ],{ptn,Rest[IntegerPartitions[n]]}]];
    Table[Length[nms[n]],{n,15}]

Extensions

a(18)-a(22) from Robert Price, Sep 14 2018

A330474 Number of non-isomorphic balanced reduced multisystems of weight n.

Original entry on oeis.org

1, 1, 2, 7, 48, 424
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The weight of an atom is 1, while the weight of a multiset is the sum of weights of its elements.

Examples

			Non-isomorphic representatives of the a(3) = 7 multisystems:
  {1,1,1}
  {1,1,2}
  {1,2,3}
  {{1},{1,1}}
  {{1},{1,2}}
  {{1},{2,3}}
  {{2},{1,1}}
Non-isomorphic representatives of the a(4) = 48 multisystems:
  {1,1,1,1}  {{1},{1,1,1}}    {{{1}},{{1},{1,1}}}
  {1,1,1,2}  {{1,1},{1,1}}    {{{1,1}},{{1},{1}}}
  {1,1,2,2}  {{1},{1,1,2}}    {{{1}},{{1},{1,2}}}
  {1,1,2,3}  {{1,1},{1,2}}    {{{1,1}},{{1},{2}}}
  {1,2,3,4}  {{1},{1,2,2}}    {{{1}},{{1},{2,2}}}
             {{1,1},{2,2}}    {{{1,1}},{{2},{2}}}
             {{1},{1,2,3}}    {{{1}},{{1},{2,3}}}
             {{1,1},{2,3}}    {{{1,1}},{{2},{3}}}
             {{1,2},{1,2}}    {{{1}},{{2},{1,1}}}
             {{1,2},{1,3}}    {{{1,2}},{{1},{1}}}
             {{1},{2,3,4}}    {{{1}},{{2},{1,2}}}
             {{1,2},{3,4}}    {{{1,2}},{{1},{2}}}
             {{2},{1,1,1}}    {{{1}},{{2},{1,3}}}
             {{2},{1,1,3}}    {{{1,2}},{{1},{3}}}
             {{1},{1},{1,1}}  {{{1}},{{2},{3,4}}}
             {{1},{1},{1,2}}  {{{1,2}},{{3},{4}}}
             {{1},{1},{2,2}}  {{{2}},{{1},{1,1}}}
             {{1},{1},{2,3}}  {{{2}},{{1},{1,3}}}
             {{1},{2},{1,1}}  {{{2}},{{3},{1,1}}}
             {{1},{2},{1,2}}  {{{2,3}},{{1},{1}}}
             {{1},{2},{1,3}}
             {{1},{2},{3,4}}
             {{2},{3},{1,1}}
		

Crossrefs

Labeled versions are A330475 (strongly normal) and A330655 (normal).
The case where the atoms are all different is A318813.
The case where the atoms are all equal is (also) A318813.
The labeled case of set partitions is A005121.
The labeled case of integer partitions is A330679.
The case of maximal depth is A330663.
The version where leaves are sets (as opposed to multisets) is A330668.

A331935 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 21, 24, 26, 27, 28, 32, 36, 38, 39, 42, 46, 48, 49, 52, 54, 56, 57, 63, 64, 69, 72, 74, 76, 78, 81, 84, 86, 91, 92, 96, 98, 104, 106, 108, 111, 112, 114, 117, 122, 126, 128, 129, 133, 138, 144, 146, 147, 148, 152, 156, 159
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all nonprime numbers whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  21: ((o)(oo))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  39: ((o)(o(o)))
  42: (o(o)(oo))
The sequence of terms together with their prime indices begins:
    1: {}              46: {1,9}             98: {1,4,4}
    2: {1}             48: {1,1,1,1,2}      104: {1,1,1,6}
    4: {1,1}           49: {4,4}            106: {1,16}
    6: {1,2}           52: {1,1,6}          108: {1,1,2,2,2}
    8: {1,1,1}         54: {1,2,2,2}        111: {2,12}
    9: {2,2}           56: {1,1,1,4}        112: {1,1,1,1,4}
   12: {1,1,2}         57: {2,8}            114: {1,2,8}
   14: {1,4}           63: {2,2,4}          117: {2,2,6}
   16: {1,1,1,1}       64: {1,1,1,1,1,1}    122: {1,18}
   18: {1,2,2}         69: {2,9}            126: {1,2,2,4}
   21: {2,4}           72: {1,1,1,2,2}      128: {1,1,1,1,1,1,1}
   24: {1,1,1,2}       74: {1,12}           129: {2,14}
   26: {1,6}           76: {1,1,8}          133: {4,8}
   27: {2,2,2}         78: {1,2,6}          138: {1,2,9}
   28: {1,1,4}         81: {2,2,2,2}        144: {1,1,1,1,2,2}
   32: {1,1,1,1,1}     84: {1,1,2,4}        146: {1,21}
   36: {1,1,2,2}       86: {1,14}           147: {2,4,4}
   38: {1,8}           91: {4,6}            148: {1,1,12}
   39: {2,6}           92: {1,1,9}          152: {1,1,1,8}
   42: {1,2,4}         96: {1,1,1,1,1,2}    156: {1,1,2,6}
		

Crossrefs

The enumeration of these trees by leaves is A050381.
The locally disjoint version A331873.
The enumeration of these trees by nodes is A331934.
The case with at most one distinct non-leaf branch of any vertex is A331936.
Lone-child-avoiding rooted trees are counted by A001678.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    mseQ[n_]:=n==1||n==2||!PrimeQ[n]&&And@@mseQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],mseQ]

A331686 Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 2, 4, 8, 17, 41, 103, 280, 793, 2330, 6979, 21291
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other (unequal) child of the same vertex. Lone-child-avoiding means there are no unary branchings. In an identity tree, all branches of any given vertex are distinct.

Examples

			The a(1) = 1 through a(5) = 17 trees:
  (1)  (2)   (3)       (4)            (5)
       (11)  (12)      (13)           (14)
             (111)     (22)           (23)
             ((1)(2))  (112)          (113)
                       (1111)         (122)
                       ((1)(3))       (1112)
                       ((2)(11))      (11111)
                       ((1)((1)(2)))  ((1)(4))
                                      ((2)(3))
                                      ((1)(22))
                                      ((3)(11))
                                      ((2)(111))
                                      ((1)((1)(3)))
                                      ((2)((1)(2)))
                                      ((11)((1)(2)))
                                      ((1)((2)(11)))
                                      ((1)((1)((1)(2))))
		

Crossrefs

The non-identity version is A331678.
The case where the leaves are all singletons is A316694.
Identity trees are A004111.
Locally disjoint identity trees are A316471.
Locally disjoint enriched identity p-trees are A331684.
Lone-child-avoiding locally disjoint rooted semi-identity trees are A212804.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],UnsameQ@@#&&disjointQ[#]&],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]
Previous Showing 31-40 of 144 results. Next