cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A363901 Expansion of Sum_{k>0} x^k / (1 - x^(3*k))^2.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 3, 1, 5, 1, 3, 6, 4, 1, 9, 1, 1, 8, 7, 4, 9, 1, 3, 10, 6, 1, 16, 1, 5, 12, 9, 1, 13, 4, 3, 14, 8, 6, 21, 1, 4, 16, 11, 1, 17, 1, 9, 21, 14, 1, 26, 1, 1, 20, 16, 8, 21, 1, 7, 22, 12, 4, 31, 6, 9, 24, 15, 1, 32, 1, 3, 26, 14, 10, 36, 4, 6, 28, 27, 1, 29, 1, 16, 30, 16, 1, 41, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 2 &, Mod[#, 3] == 1 &]/3; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%3==1)*(d+2))/3;

Formula

a(n) = (1/3) * Sum_{d|n, d==1 mod 3} (d+2) = (2 * A001817(n) + A078181(n))/3.
G.f.: Sum_{k>0} k * x^(3*k-2) / (1 - x^(3*k-2)).

A359212 Number of divisors of 3*n-2 of form 3*k+1.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 3, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 4, 2, 2, 5, 2, 2, 2, 6, 2, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 2, 4, 2, 6, 2, 2, 3, 4, 4, 2, 2, 4, 2, 4, 2, 6, 2, 2, 2, 6, 2, 2, 4, 6, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 5, 4, 2, 2, 4
Offset: 1

Views

Author

Seiichi Manyama, Dec 21 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[3*n-2, 1 &, Mod[#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(3*n-2, d, d%3==1);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(3*k-2))))

Formula

G.f.: Sum_{k>0} x^k/(1 - x^(3*k-2)).

A364204 Expansion of Sum_{k>=0} x^(3*k+1) / (1 + x^(3*k+1)).

Original entry on oeis.org

1, -1, 1, 0, 1, -1, 2, -2, 1, 0, 1, 0, 2, -2, 1, -1, 1, -1, 2, -1, 2, 0, 1, -2, 2, -2, 1, 0, 1, 0, 2, -3, 1, 0, 2, 0, 2, -2, 2, -2, 1, -2, 2, -1, 1, 0, 1, -1, 3, -1, 1, 0, 1, -1, 2, -4, 2, 0, 1, -1, 2, -2, 2, -2, 2, 0, 2, -1, 1, 0, 1, -2, 2, -2, 2, 0, 2, -2, 2, -3, 1, 0, 1, 0, 2, -2, 1, -2, 1, 0, 4, -1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 92; CoefficientList[Series[Sum[x^(3 k + 1)/(1 + x^(3 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) &, MemberQ[{1}, Mod[n/#, 3]] &], {n, 1, 92}]

Formula

a(n) = Sum_{d|n, n/d==1 (mod 3)} (-1)^(d+1).

A218442 a(n) = Sum_{k=0..n} floor(n/(3*k + 1)).

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19, 21, 22, 25, 26, 27, 29, 32, 34, 36, 37, 39, 41, 43, 44, 48, 49, 51, 53, 56, 57, 59, 61, 63, 65, 67, 69, 73, 74, 76, 78, 81, 82, 84, 85, 88, 91, 94, 95, 99, 100, 101, 103, 107, 109, 111, 112, 115, 117, 119, 121, 125, 127, 129, 131, 134, 135, 139, 140, 142, 144, 146, 148, 152
Offset: 0

Views

Author

Benoit Cloitre, Oct 28 2012

Keywords

Crossrefs

Partial sums of A001817.

Programs

  • Mathematica
    d[n_] := DivisorSum[n, 1 &, Mod[#, 3] == 1 &]; d[0] = 0; Accumulate@Array[d, 100, 0] (* Amiram Eldar, Nov 25 2023 *)
  • Maxima
    A218442[n]:=sum(floor(n/(3*k+1)),k,0,n)$
    makelist(A218442[n],n,0,80); /* Martin Ettl, Oct 29 2012 */
  • PARI
    a(n)=sum(k=0,n\3,(n\(3*k+1)))
    

Formula

a(n) = n*log(n)/3 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,3) - (1 - gamma)/3 = A256425 - (1 - A001620)/3 = 0.536879... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A326394 Expansion of Sum_{k>=1} x^k * (1 + x^(2*k)) / (1 - x^(3*k)).

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 2, 2, 3, 2, 1, 5, 2, 2, 3, 3, 1, 5, 2, 3, 4, 2, 1, 6, 2, 2, 4, 4, 1, 6, 2, 3, 3, 2, 2, 8, 2, 2, 4, 4, 1, 6, 2, 3, 5, 2, 1, 8, 3, 3, 3, 4, 1, 7, 2, 4, 4, 2, 1, 9, 2, 2, 6, 4, 2, 6, 2, 3, 3, 4, 1, 10, 2, 2, 5, 4, 2, 6, 2, 5, 5, 2, 1, 10, 2, 2, 3, 4, 1, 10, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Comments

Number of divisors of n that are not of the form 3*k + 2.

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[x^k (1 + x^(2 k))/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, 1 &, !MemberQ[{2}, Mod[#, 3]] &], {n, 1, 90}]
  • PARI
    a(n) = {numdiv(n) - sumdiv(n, d, d%3==2)} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A000005(n) - A001822(n).
Sum_{k=1..n} a(k) ~ 2*n*log(n)/3 + c*n, where c = (5*gamma-2)/3 - gamma(2,3) = (5*A001620-2)/3 - A256843 = 0.222152... . - Amiram Eldar, Jan 14 2024

A326395 Expansion of Sum_{k>=1} x^(2*k) * (1 + x^k) / (1 - x^(3*k)).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 0, 2, 2, 2, 1, 4, 0, 2, 3, 2, 1, 5, 0, 3, 2, 2, 1, 6, 1, 2, 3, 2, 1, 6, 0, 3, 3, 2, 2, 7, 0, 2, 2, 4, 1, 6, 0, 3, 5, 2, 1, 7, 0, 3, 3, 2, 1, 7, 2, 4, 2, 2, 1, 9, 0, 2, 4, 3, 2, 6, 0, 3, 3, 4, 1, 10, 0, 2, 4, 2, 2, 6, 0, 5, 4, 2, 1, 8, 2, 2, 3, 4, 1, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Comments

Number of divisors of n that are not of the form 3*k + 1.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1) .. a(N)
    S:= series(add(x^(2*k)*(1+x^k)/(1-x^(3*k)),k=1..N/2),x,N+1):
    seq(coeff(S,x,i),i=1..N); # Robert Israel, Aug 27 2020
  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[x^(2 k) (1 + x^k)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, 1 &, !MemberQ[{1}, Mod[#, 3]] &], {n, 1, 90}]
  • PARI
    a(n) = {numdiv(n) - sumdiv(n, d, d%3==1)} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A000005(n) - A001817(n).
Sum_{k=1..n} a(k) ~ 2*n*log(n)/3 + c*n, where c = (5*gamma-2)/3 - gamma(1,3) = (5*A001620-2)/3 - A256425 = -0.382447... . - Amiram Eldar, Jan 14 2024

A362696 Expansion of e.g.f. Product_{k>0} (1 - x^(3*k-2))^(-1/(3*k-2)).

Original entry on oeis.org

1, 1, 2, 6, 30, 150, 900, 7020, 62460, 562140, 5984280, 67252680, 863165160, 11700148680, 173098134000, 2625661170000, 45310413258000, 782198417206800, 14310269286746400, 280333959468789600, 6002139207488767200, 129820528515538159200, 2934651197018947982400
Offset: 0

Views

Author

Seiichi Manyama, Jul 07 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1,N, (1-x^(3*k-2))^(1/(3*k-2)))))

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A001817(k) * a(n-k)/(n-k)!.

A364582 a(n) is the least number with exactly n divisors of the form 3*k+1.

Original entry on oeis.org

1, 4, 16, 28, 80, 112, 320, 280, 784, 560, 1600, 1120, 10000, 2240, 3920, 2800, 25600, 5600, 1310720, 6160, 15680, 11200, 48400, 12320, 110000, 70000, 39200, 24640, 6553600, 30800, 5368709120, 36400, 78400, 179200, 440000, 61600, 343597383680, 1210000, 490000, 80080
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while (sumdiv(k, d, (d%3)==1) != n, k++); k; \\ Michel Marcus, Jul 29 2023

Extensions

More terms from Bert Dobbelaere, Jul 31 2023

A363970 Expansion of Sum_{k>0} k^2 * x^(3*k-2) / (1 - x^(3*k-2)).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 10, 5, 1, 17, 1, 5, 26, 10, 1, 41, 1, 1, 50, 21, 10, 65, 1, 5, 82, 26, 1, 114, 1, 17, 122, 41, 1, 145, 10, 5, 170, 50, 26, 217, 1, 10, 226, 69, 1, 257, 1, 41, 299, 98, 1, 354, 1, 1, 362, 114, 50, 401, 1, 21, 442, 122, 10, 525, 26, 65, 530, 149, 1, 602, 1, 5, 626, 170
Offset: 1

Views

Author

Seiichi Manyama, Jun 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, ((#+2)/3)^2 &, Mod[#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%3==1)*((d+2)/3)^2);

Formula

a(n) = Sum_{d|n, d==1 mod 3} ((d+2)/3)^2.

A363975 Expansion of Sum_{k>0} x^k / (1 - x^(3*k))^3.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 7, 4, 1, 11, 1, 4, 16, 7, 1, 25, 1, 1, 29, 14, 7, 37, 1, 4, 46, 16, 1, 65, 1, 11, 67, 25, 1, 79, 7, 4, 92, 29, 16, 119, 1, 7, 121, 40, 1, 137, 1, 25, 160, 56, 1, 190, 1, 1, 191, 65, 29, 211, 1, 14, 232, 67, 7, 278, 16, 37, 277, 82, 1, 317, 1, 4, 326, 92, 46, 383, 7, 16, 379
Offset: 1

Views

Author

Seiichi Manyama, Jun 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[(#+2)/3+1,2] &, Mod[#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%3==1)*binomial((d+2)/3+1, 2));

Formula

G.f.: Sum_{k>0} k*(k+1)/2 * x^(3*k-2) / (1 - x^(3*k-2)).
a(n) = Sum_{d|n, d==1 mod 3} binomial((d+2)/3+1,2).
Previous Showing 11-20 of 21 results. Next