A092043
a(n) = numerator(n!/n^2).
Original entry on oeis.org
1, 1, 2, 3, 24, 20, 720, 630, 4480, 36288, 3628800, 3326400, 479001600, 444787200, 5811886080, 81729648000, 20922789888000, 19760412672000, 6402373705728000, 6082255020441600, 115852476579840000, 2322315553259520000
Offset: 1
-
[Numerator(Factorial(n)/n^2): n in [1..30]]; // Vincenzo Librandi, Apr 15 2014
-
Table[Numerator[n!/n^2], {n, 1, 40}] (* Vincenzo Librandi, Apr 15 2014 *)
Table[(n-1)!/n,{n,30}]//Numerator (* Harvey P. Dale, Apr 03 2018 *)
-
a(n)=numerator(n!/n^2)
-
a(n)=numerator(polcoeff(serlaplace(dilog(x)),n))
A160562
Triangle of scaled central factorial numbers, T(n,k) = A008958(n,n-k).
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 91, 35, 1, 1, 820, 966, 84, 1, 1, 7381, 24970, 5082, 165, 1, 1, 66430, 631631, 273988, 18447, 286, 1, 1, 597871, 15857205, 14057043, 1768195, 53053, 455, 1, 1, 5380840, 397027996, 704652312, 157280838, 8187608, 129948, 680, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 10, 1;
1, 91, 35, 1;
1, 820, 966, 84, 1;
1, 7381, 24970, 5082, 165, 1;
1, 66430, 631631, 273988, 18447, 286, 1;
...
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows n = 0..150, flattened)
- Qi Fang, Ya-Nan Feng, and Shi-Mei Ma, Alternating runs of permutations and the central factorial numbers, arXiv:2202.13978 [math.CO], 2022.
- Yoann Gelineau and Jiang Zeng, Combinatorial Interpretations of the Jacobi-Stirling Numbers, arXiv:0905.2899 [math.CO], May 18 2009.
-
A160562 := proc(n,k) npr := 2*n+1 ; kpr := 2*k+1 ; sinh(t*sinh(x)) ; npr!*coeftayl(%,x=0,npr) ; coeftayl(%,t=0,kpr) ; end: seq(seq(A160562(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Sep 09 2009
-
T[n_, k_] := Sum[(-1)^(k - m)*(2m + 1)^(2n + 1)*Binomial[2k, k + m]/(k + m + 1), {m, 0, k}]/(4^k*(2k)!);
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2017 *)
A291505
a(n) = (n!)^7 * Sum_{i=1..n} 1/i^7.
Original entry on oeis.org
0, 1, 129, 282251, 4624680320, 361307736471424, 101143400834944548864, 83296040059942781485105152, 174684539610200377980575079727104, 835510910973061065615656036610946891776, 8355109938323553617123838798161699143680000000
Offset: 0
-
Table[(n!)^7 * Sum[1/i^7, {i, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 27 2017 *)
-
a(n) = n!^7*sum(i=1, n, 1/i^7); \\ Michel Marcus, Aug 26 2017
A291506
a(n) = (n!)^8 * Sum_{i=1..n} 1/i^8.
Original entry on oeis.org
0, 1, 257, 1686433, 110523752704, 43173450975314176, 72514862031522895036416, 418033821374598847702425993216, 7013444132843374500928464765799366656, 301905779820559925981495987360836056017534976
Offset: 0
-
Table[(n!)^8 * Sum[1/i^8, {i, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 27 2017 *)
-
a(n) = n!^8*sum(i=1, n, 1/i^8); \\ Michel Marcus, Aug 26 2017
A291507
a(n) = (n!)^9 * Sum_{i=1..n} 1/i^9.
Original entry on oeis.org
0, 1, 513, 10097891, 2647111616000, 5170142516807540224, 52103129720841632885243904, 2102549272223560776918400601161728, 282199388424234851655058321255905292713984, 109329825340451764123791003609208862665771818418176
Offset: 0
-
Table[(n!)^9 * Sum[1/i^9, {i, 1, n}], {n, 0, 12}] (* Vaclav Kotesovec, Aug 27 2017 *)
-
a(n) = n!^9*sum(i=1, n, 1/i^9); \\ Michel Marcus, Aug 26 2017
A291508
a(n) = (n!)^10 * Sum_{i=1..n} 1/i^10.
Original entry on oeis.org
0, 1, 1025, 60526249, 63466432537600, 619789443653380965376, 37476298202061058687475122176, 10586126703664512292193022557971021824, 11366767006463449393869821987386636472445566976, 39633465899293694663690352980684333029782095493517541376
Offset: 0
-
Table[(n!)^10 * Sum[1/i^10, {i, 1, n}], {n, 0, 12}] (* Vaclav Kotesovec, Aug 27 2017 *)
-
a(n) = n!^10*sum(i=1, n, 1/i^10); \\ Michel Marcus, Aug 26 2017
A142996
a(0) = 0, a(1) = 1, a(n+1) = (2*n^2+2*n+7)*a(n) - n^4*a(n-1), n >= 1.
Original entry on oeis.org
0, 1, 11, 193, 5092, 189916, 9541872, 622179216, 51129292032, 5172077028096, 631719119232000, 91679469784704000, 15596136686979072000, 3074102117690701824000, 695050625746441101312000
Offset: 0
- Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
-
p := n -> 3*n^2+3*n+1: a := n -> n!^2*p(n)*sum (1/(k^2*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..20);
-
RecurrenceTable[{a[0]==0,a[1]==1,a[n+1]==(2n^2+2n+7)a[n]-n^4 a[n-1]},a,{n,20}] (* Harvey P. Dale, Jun 27 2017 *)
A142997
a(0) = 0, a(1) = 1, a(n+1) = (2*n^2+2*n+13)*a(n) - n^4*a(n-1).
Original entry on oeis.org
0, 1, 17, 409, 13756, 624364, 36981072, 2777988240, 258456976128, 29199105421056, 3939691125888000, 625956978121344000, 115709065165486080000, 24625602280458786816000
Offset: 0
- Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
A142998
a(0) = 0, a(1) = 1, a(n+1) = (2*n^2+2*n+21)*a(n) - n^4*a(n-1).
Original entry on oeis.org
0, 1, 25, 809, 34380, 1890076, 131608656, 11369370384, 1196133878016, 150793148779776, 22461588531072000, 3905311348190592000, 784153616550893568000, 180142618195367442432000
Offset: 0
- Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
A160563
Table of the number of (n,k)-Riordan complexes, read by rows.
Original entry on oeis.org
1, 1, 1, 9, 10, 1, 225, 259, 35, 1, 11025, 12916, 1974, 84, 1, 893025, 1057221, 172810, 8778, 165, 1, 108056025, 128816766, 21967231, 1234948, 28743, 286, 1, 18261468225, 21878089479, 3841278805, 230673443, 6092515, 77077, 455, 1, 4108830350625, 4940831601000
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 9, 10, 1;
[3] 225, 259, 35, 1;
[4] 11025, 12916, 1974, 84, 1;
[5] 893025, 1057221, 172810, 8778, 165, 1;
[6] 108056025, 128816766, 21967231, 1234948, 28743, 286, 1;
.
For row 3: F(x) := 1/cos(x). Then 225*F(x) + 259*(d/dx)^2(F(x)) + 35*(d/dx)^4(F(x)) + (d/dx)^6(F(x)) = 720*(1/cos(x))^7, where F^(r) denotes the r-th derivative of F(x).
-
t := proc(n,k) option remember ; expand(x*mul(x+n/2-i,i=1..n-1)) ; coeftayl(%,x=0,k) ; end:
v := proc(n,k) option remember ; 4^(n-k)*t(2*n+1,2*k+1) ; end:
A160563 := proc(n,k) abs(v(n,k)) ; end: for n from 0 to 10 do for k from 0 to n do printf("%d,",A160563(n,k)) ; od: od: # R. J. Mathar, May 20 2009
# Using a bivariate generating function (albeit generating signed terms):
gf := (t + sqrt(1 + t^2))^x: ser := series(gf, t, 20):
ct := n -> coeff(ser, t, n): T := (n, k) -> n!*coeff(ct(n), x, k):
OddPart := (T, len) -> local n, k;
seq(print(seq(T(n, k), k = 1..n, 2)), n = 1..2*len, 2):
OddPart(T, 6); # Peter Luschny, Mar 03 2024
-
t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n - 1)!!)^2; t[n_, k_] := t[n, k] = (2*n - 1)^2*t[n - 1, k - 1] + t[n - 1, k];
T[n_, k_] := t[n, n - k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2017, after R. J. Mathar's comment *)
Comments