cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A092043 a(n) = numerator(n!/n^2).

Original entry on oeis.org

1, 1, 2, 3, 24, 20, 720, 630, 4480, 36288, 3628800, 3326400, 479001600, 444787200, 5811886080, 81729648000, 20922789888000, 19760412672000, 6402373705728000, 6082255020441600, 115852476579840000, 2322315553259520000
Offset: 1

Views

Author

Ralf Stephan, Mar 28 2004

Keywords

Comments

Numerator of expansion of dilog(x) = Li_2(x) = -Integral_{t=0..x} (log(1-t)/t)*dt. See the Weisstein link.
E.g.f. of {a(n)/A014973(n)}_{n>=1} is Li_2(x) (with 0 for n=0).

Crossrefs

Denominator is in A014973.

Programs

  • Magma
    [Numerator(Factorial(n)/n^2): n in [1..30]]; // Vincenzo Librandi, Apr 15 2014
  • Mathematica
    Table[Numerator[n!/n^2], {n, 1, 40}] (* Vincenzo Librandi, Apr 15 2014 *)
    Table[(n-1)!/n,{n,30}]//Numerator (* Harvey P. Dale, Apr 03 2018 *)
  • PARI
    a(n)=numerator(n!/n^2)
    
  • PARI
    a(n)=numerator(polcoeff(serlaplace(dilog(x)),n))
    

Formula

From Wolfdieter Lang, Apr 28 2017: (Start)
a(n) = numerator(n!/n^2) = numerator((n-1)!/n), n >= 1. See the name.
E.g.f. {a(n)/A014973(n)}_{n>=1} with 0 for n=0 is Li_2(x). See the comment.
(-1)^n*a(n+1)/A014973(n+1) = (-1)^n*n!/(n+1) = Sum_{k=0..n} Stirling1(n, k)*Bernoulli(k), with Stirling1 = A048994 and Bernoulli(k) = A027641(k)/A027642(k), n >= 0. From inverting the formula for B(k) in terms of Stirling2 = A048993.(End)
From Wolfdieter Lang, Oct 26 2022: (Start)
a(n) = (n-1)!/gcd(n,(n-1)!) = A000142(n-1)/A181569(n-1), n >= 1.
The expansion of (1+x)*exp(x) has coefficients A014973(n+1)/a(n+1), for n >= 0. (End)

Extensions

Comment rewritten by Wolfdieter Lang, Apr 28 2017

A160562 Triangle of scaled central factorial numbers, T(n,k) = A008958(n,n-k).

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 91, 35, 1, 1, 820, 966, 84, 1, 1, 7381, 24970, 5082, 165, 1, 1, 66430, 631631, 273988, 18447, 286, 1, 1, 597871, 15857205, 14057043, 1768195, 53053, 455, 1, 1, 5380840, 397027996, 704652312, 157280838, 8187608, 129948, 680, 1
Offset: 0

Views

Author

Jonathan Vos Post, May 19 2009

Keywords

Comments

This is table 4 on page 12 of Gelineau and Zeng, read downwards by columns.
Reversing rows gives A008958.
Apparently the table can also be obtained by deleting each second row and column of A136630.

Examples

			Triangle starts:
  1;
  1,     1;
  1,    10,      1;
  1,    91,     35,      1;
  1,   820,    966,     84,     1;
  1,  7381,  24970,   5082,   165,   1;
  1, 66430, 631631, 273988, 18447, 286, 1;
  ...
		

Crossrefs

Cf. A002452 (column k=1), A002453 (column k=2), A000447 (right column k=n-1), A185375 (right column k=n-2).

Programs

  • Maple
    A160562 := proc(n,k) npr := 2*n+1 ; kpr := 2*k+1 ; sinh(t*sinh(x)) ; npr!*coeftayl(%,x=0,npr) ; coeftayl(%,t=0,kpr) ; end: seq(seq(A160562(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    T[n_, k_] := Sum[(-1)^(k - m)*(2m + 1)^(2n + 1)*Binomial[2k, k + m]/(k + m + 1), {m, 0, k}]/(4^k*(2k)!);
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2017 *)

Formula

T(n,k) = (1/((2*k)!*4^k)) * Sum_{m=0..k} (-1)^(k-m)*A039599(k,m)*(2*m+1)^(2*n). - Werner Schulte, Nov 01 2015
T(n,k) = ((-1)^(n-k)*(2*n+1)!/(2*k+1)!) * [x^(2*n+1)]sin(x)^(2*k+1) = ((2*n+1)!/(2*k+1)!) * [x^(2*n+1)]sinh(x)^(2*k+1). Note that sin(x)^(2*k+1) = (Sum_{i=0..k} (-1)^i*binomial(2*k+1,k-i)*sin((2*i+1)*x))/(2^(2*k)). - Jianing Song, Oct 29 2023

Extensions

More terms from R. J. Mathar, Sep 09 2009

A291505 a(n) = (n!)^7 * Sum_{i=1..n} 1/i^7.

Original entry on oeis.org

0, 1, 129, 282251, 4624680320, 361307736471424, 101143400834944548864, 83296040059942781485105152, 174684539610200377980575079727104, 835510910973061065615656036610946891776, 8355109938323553617123838798161699143680000000
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2017

Keywords

Crossrefs

Cf. A000254 (k=1), A001819 (k=2), A066989 (k=3), A099827 (k=5), A291456 (k=6), this sequence (k=7), A291506 (k=8), A291507 (k=9), A291508 (k=10).
Column k=7 of A291556.

Programs

  • Mathematica
    Table[(n!)^7 * Sum[1/i^7, {i, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 27 2017 *)
  • PARI
    a(n) = n!^7*sum(i=1, n, 1/i^7); \\ Michel Marcus, Aug 26 2017

Formula

a(0) = 0, a(1) = 1, a(n+1) = (n^7+(n+1)^7)*a(n) - n^14*a(n-1) for n > 0.
a(n) ~ zeta(7) * (2*Pi)^(7/2) * n^(7*n+7/2) / exp(7*n). - Vaclav Kotesovec, Aug 27 2017
Sum_{n>=0} a(n) * x^n / (n!)^7 = polylog(7,x) / (1 - x). - Ilya Gutkovskiy, Jul 15 2020

A291506 a(n) = (n!)^8 * Sum_{i=1..n} 1/i^8.

Original entry on oeis.org

0, 1, 257, 1686433, 110523752704, 43173450975314176, 72514862031522895036416, 418033821374598847702425993216, 7013444132843374500928464765799366656, 301905779820559925981495987360836056017534976
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2017

Keywords

Crossrefs

Cf. A000254 (k=1), A001819 (k=2), A066989 (k=3), A099827 (k=5), A291456 (k=6), A291505 (k=7), this sequence (k=8), A291507 (k=9), A291508 (k=10).
Column k=8 of A291556.

Programs

  • Mathematica
    Table[(n!)^8 * Sum[1/i^8, {i, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 27 2017 *)
  • PARI
    a(n) = n!^8*sum(i=1, n, 1/i^8); \\ Michel Marcus, Aug 26 2017

Formula

a(0) = 0, a(1) = 1, a(n+1) = (n^8+(n+1)^8)*a(n) - n^16*a(n-1) for n > 0.
a(n) ~ 8 * Pi^12 * n^(8*n+4) / (4725 * exp(8*n)). - Vaclav Kotesovec, Aug 27 2017
Sum_{n>=0} a(n) * x^n / (n!)^8 = polylog(8,x) / (1 - x). - Ilya Gutkovskiy, Jul 15 2020

A291507 a(n) = (n!)^9 * Sum_{i=1..n} 1/i^9.

Original entry on oeis.org

0, 1, 513, 10097891, 2647111616000, 5170142516807540224, 52103129720841632885243904, 2102549272223560776918400601161728, 282199388424234851655058321255905292713984, 109329825340451764123791003609208862665771818418176
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2017

Keywords

Crossrefs

Cf. A000254 (k=1), A001819 (k=2), A066989 (k=3), A099827 (k=5), A291456 (k=6), A291505 (k=7), A291506 (k=8), this sequence (k=9), A291508 (k=10).
Column k=9 of A291556.

Programs

  • Mathematica
    Table[(n!)^9 * Sum[1/i^9, {i, 1, n}], {n, 0, 12}] (* Vaclav Kotesovec, Aug 27 2017 *)
  • PARI
    a(n) = n!^9*sum(i=1, n, 1/i^9); \\ Michel Marcus, Aug 26 2017

Formula

a(0) = 0, a(1) = 1, a(n+1) = (n^9+(n+1)^9)*a(n) - n^18*a(n-1) for n > 0.
a(n) ~ zeta(9) * (2*Pi)^(9/2) * n^(9*n+9/2) / exp(9*n). - Vaclav Kotesovec, Aug 27 2017
Sum_{n>=0} a(n) * x^n / (n!)^9 = polylog(9,x) / (1 - x). - Ilya Gutkovskiy, Jul 15 2020

A291508 a(n) = (n!)^10 * Sum_{i=1..n} 1/i^10.

Original entry on oeis.org

0, 1, 1025, 60526249, 63466432537600, 619789443653380965376, 37476298202061058687475122176, 10586126703664512292193022557971021824, 11366767006463449393869821987386636472445566976, 39633465899293694663690352980684333029782095493517541376
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2017

Keywords

Crossrefs

Cf. A000254 (k=1), A001819 (k=2), A066989 (k=3), A099827 (k=5), A291456 (k=6), A291505 (k=7), A291506 (k=8), A291507 (k=9), this sequence (k=10).
Column k=10 of A291556.

Programs

  • Mathematica
    Table[(n!)^10 * Sum[1/i^10, {i, 1, n}], {n, 0, 12}] (* Vaclav Kotesovec, Aug 27 2017 *)
  • PARI
    a(n) = n!^10*sum(i=1, n, 1/i^10); \\ Michel Marcus, Aug 26 2017

Formula

a(0) = 0, a(1) = 1, a(n+1) = (n^10+(n+1)^10)*a(n) - n^20*a(n-1) for n > 0.
a(n) ~ 32 * Pi^15 * n^(10*n+5) / (93555 * exp(10*n)). - Vaclav Kotesovec, Aug 27 2017
Sum_{n>=0} a(n) * x^n / (n!)^10 = polylog(10,x) / (1 - x). - Ilya Gutkovskiy, Jul 15 2020

A142996 a(0) = 0, a(1) = 1, a(n+1) = (2*n^2+2*n+7)*a(n) - n^4*a(n-1), n >= 1.

Original entry on oeis.org

0, 1, 11, 193, 5092, 189916, 9541872, 622179216, 51129292032, 5172077028096, 631719119232000, 91679469784704000, 15596136686979072000, 3074102117690701824000, 695050625746441101312000
Offset: 0

Views

Author

Peter Bala, Jul 18 2008

Keywords

Comments

This is the case m = 2 of the general recurrence a(0) = 0, a(1) = 1, a(n+1) = (2*n^2+2*n+m^2+m+1 )*a(n) - n^4*a(n-1) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series sum {k = 1..inf} 1/k^2 for the constant zeta(2). See A142995 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Maple
    p := n -> 3*n^2+3*n+1: a := n -> n!^2*p(n)*sum (1/(k^2*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..20);
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n+1]==(2n^2+2n+7)a[n]-n^4 a[n-1]},a,{n,20}] (* Harvey P. Dale, Jun 27 2017 *)

Formula

a(n) = n!^2*p(n)*sum {k = 1..n} 1/(k^2*p(k-1)*p(k)), where p(n) = 3*n^2+3*n+1 = A003215(n) is the polynomial that gives the crystal ball sequence for the A_2 lattice. Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n^2+2*n+7)*a(n) - n^4*a(n-1). The sequence b(n):= n!^2*p(n) satisfies the same recurrence with b(0) = 1, b(1) = 7. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(7-1^4/(11-2^4/(19-3^4/(31-...-(n-1)^4/(2*n^2-2*n+7))))), for n >=2. Thus the behavior of a(n) for large n is given by lim n -> infinity a(n)/b(n) = 1/(7-1^4/(11-2^4/(19-3^4/(31-...-n^4/((2n^2+2n+7)-...))))) = sum {k = 1..inf} 1/(k^2*(9*k^4-3*k^2+1)) = zeta(2)-2*(1-1/4). The final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Corollary to Entry 31] (replace x by 2x+1 in the corollary and apply Entry 14).

A142997 a(0) = 0, a(1) = 1, a(n+1) = (2*n^2+2*n+13)*a(n) - n^4*a(n-1).

Original entry on oeis.org

0, 1, 17, 409, 13756, 624364, 36981072, 2777988240, 258456976128, 29199105421056, 3939691125888000, 625956978121344000, 115709065165486080000, 24625602280458786816000
Offset: 0

Views

Author

Peter Bala, Jul 18 2008, Oct 16 2008

Keywords

Comments

This is the case m = 3 of the general recurrence a(0) = 0, a(1) = 1, a(n+1) = (2*n^2+2*n+m^2+m+1)*a(n) - n^4*a(n-1) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series sum {k = 1..inf} 1/k^2 for the constant zeta(2). See A142995 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Maple
    p := n -> (10*n^3+15*n^2+11*n+3)/3: a := n -> n!^2*p(n)*sum (1/(k^2*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..20);

Formula

a(n) = n!^2*p(n)*sum {k = 1..n} 1/(k^2*p(k-1)*p(k)), where p(n) = (10*n^3+15*n^2+11*n+3)/3 = A005902(n) is the polynomial that gives the crystal ball sequence for the A_3 lattice. Recurrence: a(0) = 1, a(1) = 1, a(n+1) = (2*n^2+2*n+13)*a(n) - n^4*a(n-1). The sequence b(n):= n!^2*p(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 13. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(13-1^4/(17-2^4/(25-3^4/(37-...-(n-1)^4/(2*n^2-2*n+13))))), for n >= 2. Thus the behavior of a(n) for large n is given by lim n -> infinity a(n)/b(n) = 1/(13-1^4/(17-2^4/(25-3^4/(37-...-n^4/((2*n^2+2*n+13)-...))))) = sum {k = 1..inf} 1/(k^2*p(k-1)*p(k)) = 2*(1-1/4+1/9) - zeta(2). The final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Corollary to Entry 31] (replace x by 2x+1 in the corollary and apply Entry 14).

A142998 a(0) = 0, a(1) = 1, a(n+1) = (2*n^2+2*n+21)*a(n) - n^4*a(n-1).

Original entry on oeis.org

0, 1, 25, 809, 34380, 1890076, 131608656, 11369370384, 1196133878016, 150793148779776, 22461588531072000, 3905311348190592000, 784153616550893568000, 180142618195367442432000
Offset: 0

Views

Author

Peter Bala, Jul 18 2008

Keywords

Comments

This is the case m = 4 of the general recurrence a(0) = 0, a(1) = 1, a(n+1) = (2*n^2+2*n+m^2+m+1)*a(n) - n^4*a(n-1) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series sum {k = 1..inf} 1/k^2 for the constant zeta(2). See A142995 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Maple
    p := n -> (35*n^4+70*n^3+85*n^2+50*n+12)/12: a := n -> n!^2*p(n)*sum (1/(k^2*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..20);

Formula

a(n) = n!^2*p(n)*sum {k = 1..n} 1/(k^2*p(k-1)*p(k)), where p(n) = (35*n^4+70*n^3+85*n^2+50*n+12)/12 = A008384(n) is the polynomial that gives the crystal ball sequence for the A_4 lattice. Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n^2+2*n+21)*a(n) - n^4*a(n-1). The sequence b(n):= n!^2*p(n) satisfies the same recurrence with the initial conditions b(0) = 0, b(1) = 21. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(21-1^4/(25-2^4/(33-3^4/(45-...-(n-1)^4/(2*n^2-2*n+21))))), for n >=2. Thus the behavior of a(n) for large n is given by lim n -> infinity a(n)/b(n) = 1/(21-1^4/(25-2^4/(33-3^4/(45-...-n^4/((2*n^2+2*n+21)-...))))) = sum {k = 1..inf} 1/(k^2*p(k-1)*p(k)) = zeta(2) - 2*(1-1/4+1/9-1/16). The final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Corollary to Entry 31] (replace x by 2x+1 in the corollary and apply Entry 14).

A160563 Table of the number of (n,k)-Riordan complexes, read by rows.

Original entry on oeis.org

1, 1, 1, 9, 10, 1, 225, 259, 35, 1, 11025, 12916, 1974, 84, 1, 893025, 1057221, 172810, 8778, 165, 1, 108056025, 128816766, 21967231, 1234948, 28743, 286, 1, 18261468225, 21878089479, 3841278805, 230673443, 6092515, 77077, 455, 1, 4108830350625, 4940831601000
Offset: 0

Views

Author

Jonathan Vos Post, May 19 2009

Keywords

Comments

From Table 4, right-hand side, of Gelineau and Zeng.
Essentially a row-reversal of A008956. - R. J. Mathar, May 20 2009

Examples

			Triangle starts:
  [0]         1;
  [1]         1,          1;
  [2]         9,         10,        1;
  [3]       225,        259,       35,        1;
  [4]     11025,      12916,     1974,       84,     1;
  [5]    893025,    1057221,   172810,     8778,   165,    1;
  [6] 108056025,  128816766, 21967231,  1234948, 28743,  286, 1;
.
For row 3: F(x) := 1/cos(x). Then 225*F(x) + 259*(d/dx)^2(F(x)) + 35*(d/dx)^4(F(x)) + (d/dx)^6(F(x)) = 720*(1/cos(x))^7, where F^(r) denotes the r-th derivative of F(x).
		

Crossrefs

Programs

  • Maple
    t := proc(n,k) option remember ; expand(x*mul(x+n/2-i,i=1..n-1)) ; coeftayl(%,x=0,k) ; end:
    v := proc(n,k) option remember ; 4^(n-k)*t(2*n+1,2*k+1) ; end:
    A160563 := proc(n,k) abs(v(n,k)) ; end: for n from 0 to 10 do for k from 0 to n do printf("%d,",A160563(n,k)) ; od: od: # R. J. Mathar, May 20 2009
    # Using a bivariate generating function (albeit generating signed terms):
    gf := (t + sqrt(1 + t^2))^x: ser := series(gf, t, 20):
    ct := n -> coeff(ser, t, n): T := (n, k) -> n!*coeff(ct(n), x, k):
    OddPart := (T, len) -> local n, k;
    seq(print(seq(T(n, k), k = 1..n, 2)), n = 1..2*len, 2):
    OddPart(T, 6);  # Peter Luschny, Mar 03 2024
  • Mathematica
    t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n - 1)!!)^2; t[n_, k_] := t[n, k] = (2*n - 1)^2*t[n - 1, k - 1] + t[n - 1, k];
    T[n_, k_] := t[n, n - k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2017, after R. J. Mathar's comment *)

Formula

a(n,k) = |v(n,k)| where v(n,k) = v(n-1,k-1) - (2n-1)^2*v(n-1,k); eq (4.2).
Let F(x) = 1/cos(x). Then (2*n)!*(1/cos(x))^(2*n+1) = Sum_{k=0..n} T(n,k)*F^(2*k)(x), where F^(r) denotes the r-th derivative of F(x) (Zhang 1998). An example is given below. - Peter Bala, Feb 06 2012
Given a (0, 0)-based triangle U we call the triangle [U(n, k), k=1..n step 2, n=1..len step 2] the 'odd subtriangle' of U. This triangle is the odd subtriangle of U(n, k) = n! * [x^(n-k)] [t^n] (t + sqrt(1 + t^2))^x, albeit with signed terms. See A182867 for the even subtriangle. - Peter Luschny, Mar 03 2024

Extensions

Extended by R. J. Mathar, May 20 2009
Previous Showing 11-20 of 21 results. Next