0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 3, 1, 2, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 2, 1, 2, 3
Offset: 1
A359227
Number of divisors of 4*n-3 of form 4*k+1.
Original entry on oeis.org
1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 3, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 2, 4, 6, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 3, 2, 4, 2, 4, 2, 2, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 4
Offset: 1
-
a[n_] := DivisorSum[4*n-3, 1 &, Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
-
a(n) = sumdiv(4*n-3, d, d%4==1);
-
my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(4*k-3))))
A364358
Number of divisors of n of the form 4*k+1 that are at most sqrt(n).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2
Offset: 1
-
f:= proc(n) nops(select(t -> t mod 4 = 1 and t^2 <= n, numtheory:-divisors(n))) end proc:
map(f, [$1..100]); # Robert Israel, Dec 29 2024
-
Table[Count[Divisors[n], _?(# <= Sqrt[n] && MemberQ[{1}, Mod[#, 4]] &)], {n, 100}]
nmax = 100; CoefficientList[Series[Sum[x^(4 k + 1)^2/(1 - x^(4 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest
A113414
Expansion of Sum_{k>0} x^k/(1-(-x^2)^k).
Original entry on oeis.org
1, 1, 0, 1, 2, 2, 0, 1, 1, 2, 0, 2, 2, 2, 0, 1, 2, 3, 0, 2, 0, 2, 0, 2, 3, 2, 0, 2, 2, 4, 0, 1, 0, 2, 0, 3, 2, 2, 0, 2, 2, 4, 0, 2, 2, 2, 0, 2, 1, 3, 0, 2, 2, 4, 0, 2, 0, 2, 0, 4, 2, 2, 0, 1, 4, 4, 0, 2, 0, 4, 0, 3, 2, 2, 0, 2, 0, 4, 0, 2, 1, 2, 0, 4, 4, 2, 0, 2, 2, 6, 0, 2, 0, 2, 0, 2, 2, 3, 0, 3, 2, 4, 0, 2, 0
Offset: 1
-
a(n)=if(n<1, 0, sumdiv(n, d, kronecker(-4, d)+2*(n%2==0)*(d%4==3)))
-
{a(n)=if(n<1, 0, if(n%4==3, 0, if(n%4==2, numdiv(n/2), if(n%4==0, sumdiv(n,d,d%2), sumdiv(n,d,(-1)^(d\2))))))}
-
{a(n)=if(n<1, 0, polcoeff( sum(k=1,sqrtint(8*n+1)\2, (-1)^(k%4==2)*x^((k^2+k)/2)/(1-(-1)^(k\2)*x^k), x*O(x^n)), n))}
-
{a(n)=if(n<1, 0, polcoeff( sum(k=1,n, x^k/(1-(-x^2)^k), x*O(x^n)), n))}
A364584
a(n) is the least number with exactly n divisors of the form 4*k+1.
Original entry on oeis.org
1, 5, 25, 45, 441, 225, 5103, 585, 1575, 2205, 35721, 2925, 194481, 25515, 11025, 9945, 2893401, 17325, 2711943423, 28665, 127575, 178605, 480249, 45045, 275625, 972405, 121275, 266805, 18983603961, 143325, 1441237924662543, 135135, 893025, 14467005, 3189375, 225225
Offset: 1
A359289
Number of divisors of 4*n-2 of form 4*k+1.
Original entry on oeis.org
1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 2, 2, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 2, 1, 3, 1, 4, 2, 2, 2, 2, 2, 2, 3, 2, 1, 4, 1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 1, 2, 1, 2, 4, 2, 1, 2, 2, 4, 3, 2, 1, 4, 2, 2, 2, 2, 1, 4, 1, 3, 3, 2, 3, 2, 1
Offset: 1
-
a[n_] := DivisorSum[4*n-2, 1 &, Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
-
a(n) = sumdiv(4*n-2, d, d%4==1);
-
my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(4*k-2))))
-
my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(4*k-3))))
A363341
Number of positive integers k <= n such that round(n/k) is odd.
Original entry on oeis.org
1, 1, 2, 2, 4, 3, 4, 4, 6, 7, 6, 5, 9, 8, 9, 9, 10, 10, 11, 12, 13, 12, 13, 12, 15, 16, 17, 16, 17, 16, 17, 17, 20, 21, 20, 20, 23, 22, 21, 22, 24, 23, 26, 25, 28, 27, 26, 25, 27, 29, 30, 31, 32, 31, 32, 31, 32, 33, 34, 33, 35, 34, 37, 37, 40, 39, 38, 39, 40
Offset: 1
For n=5: round(5/1), round(5/2), round(5/3), round(5/4), round(5/5) = 5, 3, 2, 1, 1 among which 4 are odd so a(5)=4.
Cf.
A059851 (number of k=1..n such that floor(n/k) is odd).
Cf.
A330926 (number of k=1..n such that ceiling(n/k) is odd).
Cf.
A057655 (number of lattice points in circle).
Cf.
A077024 (n + floor(2n/3) + floor(2n/5) + floor(2n/7) + ...).
-
f:= proc(n) local k;
nops(select(k -> floor(n/k + 1/2)::odd, [$1..n]))
end proc:
map(f, [$1..120]); # Robert Israel, Aug 03 2025
-
a(n) = sum(k=1, n, round(n/k)%2) \\ Andrew Howroyd, May 28 2023
A363972
Expansion of Sum_{k>0} k^2 * x^(4*k-3) / (1 - x^(4*k-3)).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 1, 10, 5, 1, 1, 17, 1, 5, 1, 26, 10, 1, 5, 37, 1, 1, 1, 54, 17, 10, 1, 65, 5, 1, 1, 82, 26, 5, 10, 101, 1, 17, 5, 122, 37, 1, 1, 158, 1, 1, 1, 170, 54, 26, 17, 197, 10, 5, 1, 226, 65, 1, 5, 257, 1, 46, 1, 310, 82, 1, 26, 325, 5, 1, 10, 362, 101, 54, 1, 401, 17, 1, 5, 451, 122, 1
Offset: 1
-
a[n_] := DivisorSum[n, ((#+3)/4)^2 &, Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 30 2023 *)
-
a(n) = sumdiv(n, d, (d%4==1)*((d+3)/4)^2);
Comments