cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A188171 The number of divisors d of n of the form d == 5 (mod 8).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 2
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2011

Keywords

Comments

a(5n) >= 1 as d=5 contributes to the count.

Examples

			a(13) = 1 because the divisor d=13 is 8+5 == 5 (mod 8).
		

Crossrefs

Programs

  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A188171 := proc(n) sigmamr(n,8,5) ; end proc:
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 8] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A188171(n) = sumdiv(n, d, (5==(d%8)));  \\ Antti Karttunen, Jul 09 2017

Formula

A188169(n)+a(n) = A001826(n).
A188169(n)+A188170(n)-a(n)-A188172(n) = A002325(n).
G.f.: Sum_{k>=1} x^(5*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,8) - (1 - gamma)/8 = -0.131189..., gamma(5,8) = -(psi(5/8) + log(8))/8 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363903 Expansion of Sum_{k>0} x^k / (1 - x^(4*k))^2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 5, 1, 3, 1, 6, 4, 1, 3, 7, 1, 1, 1, 10, 5, 4, 1, 9, 3, 1, 1, 10, 6, 3, 4, 11, 1, 5, 3, 12, 7, 1, 1, 18, 1, 1, 1, 14, 10, 6, 5, 15, 4, 3, 1, 16, 9, 1, 3, 17, 1, 10, 1, 24, 10, 1, 6, 19, 3, 1, 4, 20, 11, 10, 1, 21, 5, 1, 3, 25, 12, 1, 7, 30, 1, 9, 1, 24, 18, 5, 1, 25, 1, 3, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 3 &, Mod[#, 4] == 1 &]/4; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%4==1)*(d+3))/4;

Formula

a(n) = (1/4) * Sum_{d|n, d==1 mod 4} (d+3) = (3 * A001826(n) + A050449(n))/4.
G.f.: Sum_{k>0} k * x^(4*k-3) / (1 - x^(4*k-3)).

A293451 Number of proper divisors of n of the form 4k+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 3, 1, 2, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A293451(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, d
a(n) = A091954(n) - A293513(n).
a(n) = A001826(n) - A121262(n-1).
G.f.: Sum_{k>=1} x^(8*k-6) / (1 - x^(4*k-3)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,4) - (2 - gamma)/4 = A256778 - (2 - A001620)/4 = 0.354593... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A359227 Number of divisors of 4*n-3 of form 4*k+1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 3, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 2, 4, 6, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 3, 2, 4, 2, 4, 2, 2, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 4
Offset: 1

Author

Seiichi Manyama, Dec 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[4*n-3, 1 &, Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(4*n-3, d, d%4==1);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(4*k-3))))

Formula

a(n) = A001826(4*n-3).
G.f.: Sum_{k>0} x^k/(1 - x^(4*k-3)).

A364358 Number of divisors of n of the form 4*k+1 that are at most sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2
Offset: 1

Author

Ilya Gutkovskiy, Jul 21 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) nops(select(t -> t mod 4 = 1 and t^2 <= n, numtheory:-divisors(n))) end proc:
    map(f, [$1..100]); # Robert Israel, Dec 29 2024
  • Mathematica
    Table[Count[Divisors[n], _?(# <= Sqrt[n] && MemberQ[{1}, Mod[#, 4]] &)], {n, 100}]
    nmax = 100; CoefficientList[Series[Sum[x^(4 k + 1)^2/(1 - x^(4 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=0} x^(4*k+1)^2 / (1 - x^(4*k+1)).

A113414 Expansion of Sum_{k>0} x^k/(1-(-x^2)^k).

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 0, 1, 1, 2, 0, 2, 2, 2, 0, 1, 2, 3, 0, 2, 0, 2, 0, 2, 3, 2, 0, 2, 2, 4, 0, 1, 0, 2, 0, 3, 2, 2, 0, 2, 2, 4, 0, 2, 2, 2, 0, 2, 1, 3, 0, 2, 2, 4, 0, 2, 0, 2, 0, 4, 2, 2, 0, 1, 4, 4, 0, 2, 0, 4, 0, 3, 2, 2, 0, 2, 0, 4, 0, 2, 1, 2, 0, 4, 4, 2, 0, 2, 2, 6, 0, 2, 0, 2, 0, 2, 2, 3, 0, 3, 2, 4, 0, 2, 0
Offset: 1

Author

Michael Somos, Oct 29 2005

Keywords

Crossrefs

A001227(n) = a(2*n), A008441(n) = a(4*n+1), A099774(n) = a(4*n+2).

Programs

  • PARI
    a(n)=if(n<1, 0, sumdiv(n, d, kronecker(-4, d)+2*(n%2==0)*(d%4==3)))
    
  • PARI
    {a(n)=if(n<1, 0, if(n%4==3, 0, if(n%4==2, numdiv(n/2), if(n%4==0, sumdiv(n,d,d%2), sumdiv(n,d,(-1)^(d\2))))))}
    
  • PARI
    {a(n)=if(n<1, 0, polcoeff( sum(k=1,sqrtint(8*n+1)\2, (-1)^(k%4==2)*x^((k^2+k)/2)/(1-(-1)^(k\2)*x^k), x*O(x^n)), n))}
    
  • PARI
    {a(n)=if(n<1, 0, polcoeff( sum(k=1,n, x^k/(1-(-x^2)^k), x*O(x^n)), n))}

Formula

Moebius transform is period 8 sequence [1, 0, -1, 0, 1, 2, -1, 0, ...].
G.f.: Sum_{k>0} x^k/(1-(-x^2)^k) = Sum_{k>0} x^k/(1+x^(2k))+2x^(6k)/(1-x^(8k)) = Sum_{k>0} -(-1)^k x^(2k-1)/(1+(-1)^k*x^(2k-1)).
a(4n+3) = 0.
a(n) = A001826(n) + (-1)^n * A001842(n). - David Spies, Sep 26 2012

A364584 a(n) is the least number with exactly n divisors of the form 4*k+1.

Original entry on oeis.org

1, 5, 25, 45, 441, 225, 5103, 585, 1575, 2205, 35721, 2925, 194481, 25515, 11025, 9945, 2893401, 17325, 2711943423, 28665, 127575, 178605, 480249, 45045, 275625, 972405, 121275, 266805, 18983603961, 143325, 1441237924662543, 135135, 893025, 14467005, 3189375, 225225
Offset: 1

Author

Ilya Gutkovskiy, Jul 28 2023

Keywords

Crossrefs

Extensions

More terms from Bert Dobbelaere, Jul 31 2023

A359289 Number of divisors of 4*n-2 of form 4*k+1.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 2, 2, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 2, 1, 3, 1, 4, 2, 2, 2, 2, 2, 2, 3, 2, 1, 4, 1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 1, 2, 1, 2, 4, 2, 1, 2, 2, 4, 3, 2, 1, 4, 2, 2, 2, 2, 1, 4, 1, 3, 3, 2, 3, 2, 1
Offset: 1

Author

Seiichi Manyama, Dec 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[4*n-2, 1 &, Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(4*n-2, d, d%4==1);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(4*k-2))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(4*k-3))))

Formula

a(n) = A001826(4*n-2).
G.f.: Sum_{k>0} x^k/(1 - x^(4*k-2)).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(4*k-3)).

A363341 Number of positive integers k <= n such that round(n/k) is odd.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 4, 4, 6, 7, 6, 5, 9, 8, 9, 9, 10, 10, 11, 12, 13, 12, 13, 12, 15, 16, 17, 16, 17, 16, 17, 17, 20, 21, 20, 20, 23, 22, 21, 22, 24, 23, 26, 25, 28, 27, 26, 25, 27, 29, 30, 31, 32, 31, 32, 31, 32, 33, 34, 33, 35, 34, 37, 37, 40, 39, 38, 39, 40
Offset: 1

Author

Caleb M. Shor, May 28 2023

Keywords

Comments

Here round(x) = floor(x + 1/2).
a(n) is related to the number of lattice points in a circle. Let C(x) equal the number of square lattice points in a circle of radius sqrt(x) centered at the origin. Then a(n) = (C(2n) - 4n - 1)/4. (Prop 3.5 in Dent & Shor paper)

Examples

			For n=5: round(5/1), round(5/2), round(5/3), round(5/4), round(5/5) = 5, 3, 2, 1, 1 among which 4 are odd so a(5)=4.
		

Crossrefs

Cf. A059851 (number of k=1..n such that floor(n/k) is odd).
Cf. A330926 (number of k=1..n such that ceiling(n/k) is odd).
Cf. A057655 (number of lattice points in circle).
Cf. A001826 (d_1), A001842 (d_3), A002654 (d_1-d_3).
Cf. A077024 (n + floor(2n/3) + floor(2n/5) + floor(2n/7) + ...).

Programs

  • Maple
    f:= proc(n) local k;
       nops(select(k -> floor(n/k + 1/2)::odd, [$1..n]))
    end proc:
    map(f, [$1..120]); # Robert Israel, Aug 03 2025
  • PARI
    a(n) = sum(k=1, n, round(n/k)%2) \\ Andrew Howroyd, May 28 2023

Formula

a(n) = n - floor(2n/3) + floor(2n/5) - floor(2n/7) + ...
a(n) = -n + Sum_{k=1..2n} d_1(k) - d_3(k), where d_i(k) is the number of divisors of k that are congruent to i modulo 4.

A363972 Expansion of Sum_{k>0} k^2 * x^(4*k-3) / (1 - x^(4*k-3)).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 1, 10, 5, 1, 1, 17, 1, 5, 1, 26, 10, 1, 5, 37, 1, 1, 1, 54, 17, 10, 1, 65, 5, 1, 1, 82, 26, 5, 10, 101, 1, 17, 5, 122, 37, 1, 1, 158, 1, 1, 1, 170, 54, 26, 17, 197, 10, 5, 1, 226, 65, 1, 5, 257, 1, 46, 1, 310, 82, 1, 26, 325, 5, 1, 10, 362, 101, 54, 1, 401, 17, 1, 5, 451, 122, 1
Offset: 1

Author

Seiichi Manyama, Jun 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, ((#+3)/4)^2 &, Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%4==1)*((d+3)/4)^2);

Formula

a(n) = Sum_{d|n, d==1 mod 4} ((d+3)/4)^2.
Previous Showing 11-20 of 21 results. Next