A101313
Number of painted forests - exactly one of its trees is painted - on labeled vertex set [n].
Original entry on oeis.org
1, 3, 12, 68, 525, 5262, 65674, 987408, 17426565, 353759300, 8127640224, 208600774032, 5917247520457, 183872561612040, 6212370268252950, 226762373954676608, 8893485959056048521, 372980176625914811568, 16656844860594186642100, 789196576594282265505600
Offset: 1
Joseph G. Moser (jmoser(AT)wcupa.edu), Jan 26 2005
a(5) = 291 + (16*4*1)+(3*6*3)+(1*4*12)+(1*1*68) = 525.
-
B:= n-> exp(add(k^(k-2) *x^k/k!, k = 1..n )): b:= n-> coeff(series(B(n), x,n+1), x,n)*n!: a:= n-> add(binomial(n,k) *k^(k-2) *b(n-k), k=1..n): seq(a(n), n=1..25); # Alois P. Heinz, Sep 10 2008
-
nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Drop[Range[0,nn]!CoefficientList[Series[D[Exp[y(t-t^2/2)],y]/.y->1,{x,0,nn}],x],1] (* Geoffrey Critzer, Nov 04 2012 *)
A137352
Number of labeled graphs with at least one cycle in which every connected component has at most one cycle.
Original entry on oeis.org
1, 19, 317, 5592, 108839, 2356175, 56590729, 1499304898, 43532688017, 1376491137807, 47122376352941, 1737338689842008, 68657874376063231, 2896049933653455241, 129892644397271578571, 6173717934189145195530, 309998781844881257871161, 16399060640250318161199785
Offset: 3
a(6)=5592 because we have several cases of one unicyclic graph or two. Namely,
-One triangle and a forest of order 3. The unique triangle can be relabeled in C(6,3)=20 ways, we have 20*7= 140 graphs.
-One unicyclic graph with 4 nodes and a forest of order 2. The 15 distinct unicyclic graphs of 4 nodes can be relabeled in C(6,4) ways, so we have 2*15C(6,2), or 450 graphs.
-One unicyclic graph with 5 nodes and an isolated vertex. There are 222 different graphs that can be relabeled in C(6,5) ways, so 6 * 222 = 1332 graphs.
-One unicyclic graph with 6 nodes, so 3660 graphs.
-Two triangles. The triangles can be relabeled in C(6,3)/2 ways. So 10 graphs.
The total of all cases is 5592.
-
cy:= proc(n) option remember; local t; binomial(n-1, 2) *add ((n-3)! /(n-2-t)! *n^(n-2-t), t=1..n-2) end: T:= proc(n,k) option remember; local j; if k=0 then 1 elif k<0 or n add (T(n,k), k=0..n): a2:= proc(n) option remember; if n=0 then 1 else add (binomial (n-1, j) *(j+1)^(j-1) *a2(n-1-j), j=0..n-1) fi end: a:= n-> a1(n)-a2(n): seq (a(n), n=3..25); # Alois P. Heinz, Sep 15 2008
-
nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Drop[Range[0,nn]!CoefficientList[Series[ Exp[Log[1/(1-t)]/2+t/2-3t^2/4]-Exp[t-t^2/2],{x,0,nn}],x],3] (* Geoffrey Critzer, Mar 23 2013 *)
A143900
Number of simple graphs on n labeled nodes containing at least one cycle subgraph, also row sums of A143899.
Original entry on oeis.org
0, 0, 0, 1, 26, 733, 29836, 2060191, 267873508, 68709450231, 35184166480296, 36028792251523289, 73786976171465003256, 302231454900131663566437, 2475880078570650265515241808, 40564819207303337099536803011071, 1329227995784915872766249150185503728
Offset: 0
a(3) = 1, because 1 simple graph on 3 nodes with 3 edges contains a cycle subgraph:
..1-2..
..|/...
..3....
-
graphs:= n-> 2^binomial(n,2): forests:= n-> add(add(binomial(m,j) *binomial(n-1, n-m-j) *n^(n-m-j) *(m+j)!/ (-2)^j/ m!, j=0..m), m=0..n): a:= n-> graphs(n) -forests(n): seq(a(n), n=0..18);
-
graphs[n_] := 2^Binomial[n, 2]; forests[n_] := Sum[Binomial[m, j]* Binomial[n-1, n-m-j]*n^(n-m-j)*(m+j)!/(-2)^j/m!, {m, 0, n}, {j, 0, m}]; a[0] = 0; a[n_] := graphs[n] - forests[n]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 25 2017, after Alois P. Heinz *)
A143911
Triangle read by rows: T(n,k) = number of forests on n labeled nodes, where k is the maximum of the number of edges per tree (n>=1, 0<=k<=n-1).
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 9, 12, 16, 1, 25, 60, 80, 125, 1, 75, 330, 480, 750, 1296, 1, 231, 1680, 3920, 5250, 9072, 16807, 1, 763, 9408, 33600, 49000, 72576, 134456, 262144, 1, 2619, 56952, 254016, 598500, 762048, 1210104, 2359296, 4782969, 1, 9495, 348120
Offset: 1
T(4,1) = 9, because 9 forests on 4 labeled nodes have 1 as the maximum of the number of edges per tree:
.1-2. .1.2. .1.2. .1.2. .1.2. .1.2. .1-2. .1.2. .1.2.
..... ...|. ..... .|... ..\.. ../.. ..... .|.|. ..X..
.4.3. .4.3. .4-3. .4.3. .4.3. .4.3. .4-3. .4.3. .4.3.
Triangle begins:
1;
1, 1;
1, 3, 3;
1, 9, 12, 16;
1, 25, 60, 80, 125;
1, 75, 330, 480, 750, 1296;
-
A:= (n,k)-> coeff(series(exp(add(j^(j-2) *x^j/j!, j=1..k)), x, n+1), x,n)*n!: T:= (n,k)-> A(n,k+1)-A(n,k): seq(seq(T(n,k), k=0..n-1), n=1..11);
-
A[n_, k_] := SeriesCoefficient[Exp[Sum[j^(j-2)*x^j/j!, {j, 1, k}]], {x, 0, n}]*n!; T[n_, k_] := A[n, k+1] - A[n, k];
Table[T[n, k], {n, 1, 11}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, May 31 2016, translated from Maple *)
A220690
Number of acyclic graphs on {1,2,...,n} such that the node with label 1 is in the same connected component (tree) as the node with label 2.
Original entry on oeis.org
0, 0, 1, 4, 24, 198, 2110, 27768, 436656, 8003950, 167779068, 3961727820, 104102329504, 3013887239454, 95338047836520, 3272043459321328, 121106541865151040, 4808924948167249302, 203931444227955436816, 9198925314402386788500, 439809753701222702598528
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j) *(j+1)^(j-1) *b(n-1-j), j=0..n-1))
end:
a:= n-> add(binomial(n-2, k)*(k+2)^k*b(n-k-2), k=0..n-2):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 13 2013
-
nn=20;u=Sum[n^(n-2)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Integrate[Integrate[D[D[u,x],x]Exp[u],x],x],{x,0,nn}],x]
-
N = 66; x = 'x + O('x^N);
U = sum(n=1,N,n^(n-2)*x^n/n!);
egf = intformal(intformal( deriv(deriv(U)) * exp(U) ));
gf = serlaplace(egf) + 'c0;
v = Vec(gf); v[1]-='c0; v
/* Joerg Arndt, Apr 13 2013 */
A323673
Expansion of e.g.f. log(1 - LambertW(-x)*(2 + LambertW(-x))/2).
Original entry on oeis.org
0, 1, 0, 2, 7, 69, 696, 9400, 148506, 2753793, 58255840, 1388008566, 36768832200, 1072407094693, 34151921130432, 1179292944433500, 43892264744070736, 1751768399754149025, 74633720517351765504, 3380997879130123703818, 162286529338732345488000, 8227876237310253918100581
Offset: 0
-
seq(n!*coeff(series(log(1-LambertW(-x)*(2+LambertW(-x))/2),x=0,22),x,n),n=0..21); # Paolo P. Lava, Jan 28 2019
-
nmax = 21; CoefficientList[Series[Log[1 - LambertW[-x] (2 + LambertW[-x])/2], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = n^(n - 2) - Sum[Binomial[n, k] (n - k)^(n - k - 2) k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 21}]
A378324
Number of cyclic edge cuts in the complete graph K_n.
Original entry on oeis.org
0, 0, 0, 0, 0, 10, 840, 57428, 4323760, 428530774, 66698370662, 19304350714396, 11435576322977378, 13998454986272457974, 34730539006860778387488, 172307954877667746584363616, 1699711619922134215461075979752, 33269167602899548362529088074829390
Offset: 1
-
With[{n = 20},
B[x_] := 1 + Log[Sum[2^Binomial[k, 2] x^k/k!, {k, 0, n}]];
T[x_] := 1 - LambertW[-x] - LambertW[-x]^2/2;
Rest@CoefficientList[Series[(Exp[B[x] - T[x]] - (B[x] - T[x]) - 1) Exp[T[x] - 1], {x, 0, n}], x] Range[n]!
]
-
seq(n)={my(t=sum(k=1, n, k^(k-2)*x^k/k!, O(x*x^n)), c=log(sum(k=0, n, 2^binomial(k,2)*x^k/k!, O(x*x^n)))-t); Vec(serlaplace((exp(c)-1-c)*exp(t)), -n)} \\ Andrew Howroyd, Nov 26 2024
A216413
Number of forests of trees on n labeled nodes in which each tree has a distinct number of vertices.
Original entry on oeis.org
1, 1, 1, 6, 28, 235, 2466, 31864, 488328, 8901981, 183417490, 4300791946, 111621409956, 3214239089659, 100662133475372, 3440691046061130, 126342964714732576, 4999000389915029881, 210671936366279249610, 9474491260037610708598, 450638933972015166026220
Offset: 0
-
a:= n-> n!*coeff(series(mul(1+k^(k-2)*x^k/k!, k=1..n), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 07 2012
-
nn=20;p=Product[1+n^(n-2)x^n/n!,{n,1,nn}];Range[0,nn]! CoefficientList[Series[p,{x,0,nn}],x]
A332237
E.g.f.: -log(1 + LambertW(-x) * (2 + LambertW(-x)) / 2).
Original entry on oeis.org
1, 2, 8, 49, 409, 4356, 56734, 877094, 15742521, 322454800, 7434673036, 190792267128, 5398552673617, 167087263076384, 5617979017621650, 203987454978218416, 7957053981454827601, 331920300203780633856, 14746208516909980554736, 695208730205550274544000
Offset: 1
-
nmax = 20; CoefficientList[Series[-Log[1 + LambertW[-x] (2 + LambertW[-x])/2], {x, 0, nmax}], x] Range[0, nmax]! // Rest
a[n_] := a[n] = n^(n - 2) + (1/n) Sum[Binomial[n, k] (n - k)^(n - k - 2) k a[k], {k, 1, n - 1}]; Table[a[n], {n, 1, 20}]
A372153
Irregular triangular array read by rows. T(n,k) is the number of simple labeled graphs on [n] with circuit rank equal to k, n >= 1, 0 <= k <= binomial(n-1,2).
Original entry on oeis.org
1, 2, 7, 1, 38, 19, 6, 1, 291, 317, 235, 125, 45, 10, 1, 2932, 5582, 7120, 6915, 5215, 3057, 1371, 455, 105, 15, 1, 36961, 108244, 207130, 306775, 368046, 364539, 300342, 205940, 116910, 54362, 20356, 5985, 1330, 210, 21, 1, 561948, 2331108, 6176387, 12709760
Offset: 1
Triangle T(n,k) begins:
1;
2;
7, 1;
38, 19, 6, 1;
291, 317, 235, 125, 45, 10, 1;
2932, 5582, 7120, 6915, 5215, 3057, 1371, 455, 105, 15, 1;
...
- R. Diestel, Graph Theory, Springer, 2017, pp. 23-27.
-
Needs["Combinatorica`"]; Map[Select[#, # > 0 &] &, Transpose[ Table[ Table[ Total[ Map[#[[1]] &,Select[Table[{n!/GraphData[{n, i}, "AutomorphismCount"], GraphData[{n, i}, "CyclomaticNumber"]}, {i, 1, NumberOfGraphs[n]}], #[[2]] == k &]]], {n, 1, 7}], {k, 0, 15}]]] // Grid
-
T(n)={[Vecrev(p)| p<-Vec(-1+serlaplace(exp(y*log(sum(k=0, n, (1+y)^binomial(k,2)*x^k/k!/y^k, O(x*x^n))))))]}
{ foreach(T(7), row, print(row)) } \\ Andrew Howroyd, Jun 09 2025
Comments