cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A101313 Number of painted forests - exactly one of its trees is painted - on labeled vertex set [n].

Original entry on oeis.org

1, 3, 12, 68, 525, 5262, 65674, 987408, 17426565, 353759300, 8127640224, 208600774032, 5917247520457, 183872561612040, 6212370268252950, 226762373954676608, 8893485959056048521, 372980176625914811568, 16656844860594186642100, 789196576594282265505600
Offset: 1

Views

Author

Joseph G. Moser (jmoser(AT)wcupa.edu), Jan 26 2005

Keywords

Examples

			a(5) = 291 + (16*4*1)+(3*6*3)+(1*4*12)+(1*1*68) = 525.
		

Programs

  • Maple
    B:= n-> exp(add(k^(k-2) *x^k/k!, k = 1..n )): b:= n-> coeff(series(B(n), x,n+1), x,n)*n!: a:= n-> add(binomial(n,k) *k^(k-2) *b(n-k), k=1..n): seq(a(n), n=1..25);  # Alois P. Heinz, Sep 10 2008
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Drop[Range[0,nn]!CoefficientList[Series[D[Exp[y(t-t^2/2)],y]/.y->1,{x,0,nn}],x],1]  (* Geoffrey Critzer, Nov 04 2012 *)

Formula

a(n) = f(n) + SUM{((n-i)^(n-i-2))*C((n-1), i)*a(i):i=1, 2, ..(n-1)}, where f(n)=number of forests on labeled vertex set [n], A001858.
Exponential convolution of A000272 and A001858: a(n) = Sum_{k=1..n} binomial(n, k)*k^(k-2)*A001858(n-k). E.g.f.: B(x)*exp(B(x)), where B(x) is e.g.f. for A000272. - Vladeta Jovovic, May 24 2005
a(n) = Sum_{m=1..n} A105599(n,m)*m. - Geoffrey Critzer, Nov 04 2012

Extensions

More terms from Alois P. Heinz, Sep 10 2008

A137352 Number of labeled graphs with at least one cycle in which every connected component has at most one cycle.

Original entry on oeis.org

1, 19, 317, 5592, 108839, 2356175, 56590729, 1499304898, 43532688017, 1376491137807, 47122376352941, 1737338689842008, 68657874376063231, 2896049933653455241, 129892644397271578571, 6173717934189145195530, 309998781844881257871161, 16399060640250318161199785
Offset: 3

Views

Author

Washington Bomfim, May 17 2008

Keywords

Examples

			a(6)=5592 because we have several cases of one unicyclic graph or two. Namely,
-One triangle and a forest of order 3. The unique triangle can be relabeled in C(6,3)=20 ways, we have 20*7= 140 graphs.
-One unicyclic graph with 4 nodes and a forest of order 2. The 15 distinct unicyclic graphs of 4 nodes can be relabeled in C(6,4) ways, so we have 2*15C(6,2), or 450 graphs.
-One unicyclic graph with 5 nodes and an isolated vertex. There are 222 different graphs that can be relabeled in C(6,5) ways, so 6 * 222 = 1332 graphs.
-One unicyclic graph with 6 nodes, so 3660 graphs.
-Two triangles. The triangles can be relabeled in C(6,3)/2 ways. So 10 graphs.
The total of all cases is 5592.
		

Crossrefs

Programs

  • Maple
    cy:= proc(n) option remember; local t; binomial(n-1, 2) *add ((n-3)! /(n-2-t)! *n^(n-2-t), t=1..n-2) end: T:= proc(n,k) option remember; local j; if k=0 then 1 elif k<0 or n add (T(n,k), k=0..n): a2:= proc(n) option remember; if n=0 then 1 else add (binomial (n-1, j) *(j+1)^(j-1) *a2(n-1-j), j=0..n-1) fi end: a:= n-> a1(n)-a2(n): seq (a(n), n=3..25); # Alois P. Heinz, Sep 15 2008
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Drop[Range[0,nn]!CoefficientList[Series[ Exp[Log[1/(1-t)]/2+t/2-3t^2/4]-Exp[t-t^2/2],{x,0,nn}],x],3]  (* Geoffrey Critzer, Mar 23 2013 *)

Formula

a(n) = A133686(n) - A001858(n).

Extensions

Corrected and extended by Alois P. Heinz, Sep 15 2008

A143900 Number of simple graphs on n labeled nodes containing at least one cycle subgraph, also row sums of A143899.

Original entry on oeis.org

0, 0, 0, 1, 26, 733, 29836, 2060191, 267873508, 68709450231, 35184166480296, 36028792251523289, 73786976171465003256, 302231454900131663566437, 2475880078570650265515241808, 40564819207303337099536803011071, 1329227995784915872766249150185503728
Offset: 0

Views

Author

Alois P. Heinz, Sep 04 2008

Keywords

Examples

			a(3) = 1, because 1 simple graph on 3 nodes with 3 edges contains a cycle subgraph:
..1-2..
..|/...
..3....
		

Crossrefs

Row sums of A143899.

Programs

  • Maple
    graphs:= n-> 2^binomial(n,2): forests:= n-> add(add(binomial(m,j) *binomial(n-1, n-m-j) *n^(n-m-j) *(m+j)!/ (-2)^j/ m!, j=0..m), m=0..n): a:= n-> graphs(n) -forests(n): seq(a(n), n=0..18);
  • Mathematica
    graphs[n_] := 2^Binomial[n, 2]; forests[n_] := Sum[Binomial[m, j]* Binomial[n-1, n-m-j]*n^(n-m-j)*(m+j)!/(-2)^j/m!, {m, 0, n}, {j, 0, m}]; a[0] = 0; a[n_] := graphs[n] - forests[n]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 25 2017, after Alois P. Heinz *)

Formula

a(n) = A006125(n) - A001858(n).
a(n) = Sum_{k=3..C(n,2)} A143899(n,k).

A143911 Triangle read by rows: T(n,k) = number of forests on n labeled nodes, where k is the maximum of the number of edges per tree (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 9, 12, 16, 1, 25, 60, 80, 125, 1, 75, 330, 480, 750, 1296, 1, 231, 1680, 3920, 5250, 9072, 16807, 1, 763, 9408, 33600, 49000, 72576, 134456, 262144, 1, 2619, 56952, 254016, 598500, 762048, 1210104, 2359296, 4782969, 1, 9495, 348120
Offset: 1

Views

Author

Alois P. Heinz, Sep 04 2008

Keywords

Examples

			T(4,1) = 9, because 9 forests on 4 labeled nodes have 1 as the maximum of the number of edges per tree:
  .1-2. .1.2. .1.2. .1.2. .1.2. .1.2. .1-2. .1.2. .1.2.
  ..... ...|. ..... .|... ..\.. ../.. ..... .|.|. ..X..
  .4.3. .4.3. .4-3. .4.3. .4.3. .4.3. .4-3. .4.3. .4.3.
Triangle begins:
  1;
  1,  1;
  1,  3,   3;
  1,  9,  12,  16;
  1, 25,  60,  80, 125;
  1, 75, 330, 480, 750, 1296;
		

Crossrefs

Columns k=0-1 give: A000012, A001189.
Row sums give A001858.
Rightmost diagonal gives A000272.
Cf. A138464.

Programs

  • Maple
    A:= (n,k)-> coeff(series(exp(add(j^(j-2) *x^j/j!, j=1..k)), x, n+1), x,n)*n!: T:= (n,k)-> A(n,k+1)-A(n,k): seq(seq(T(n,k), k=0..n-1), n=1..11);
  • Mathematica
    A[n_, k_] := SeriesCoefficient[Exp[Sum[j^(j-2)*x^j/j!, {j, 1, k}]], {x, 0, n}]*n!; T[n_, k_] := A[n, k+1] - A[n, k];
    Table[T[n, k], {n, 1, 11}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, May 31 2016, translated from Maple *)

Formula

See program.

A220690 Number of acyclic graphs on {1,2,...,n} such that the node with label 1 is in the same connected component (tree) as the node with label 2.

Original entry on oeis.org

0, 0, 1, 4, 24, 198, 2110, 27768, 436656, 8003950, 167779068, 3961727820, 104102329504, 3013887239454, 95338047836520, 3272043459321328, 121106541865151040, 4808924948167249302, 203931444227955436816, 9198925314402386788500, 439809753701222702598528
Offset: 0

Views

Author

Geoffrey Critzer, Apr 13 2013

Keywords

Crossrefs

Cf. A221864.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j) *(j+1)^(j-1) *b(n-1-j), j=0..n-1))
        end:
    a:= n-> add(binomial(n-2, k)*(k+2)^k*b(n-k-2), k=0..n-2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 13 2013
  • Mathematica
    nn=20;u=Sum[n^(n-2)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Integrate[Integrate[D[D[u,x],x]Exp[u],x],x],{x,0,nn}],x]
  • PARI
    N = 66;  x = 'x + O('x^N);
    U = sum(n=1,N,n^(n-2)*x^n/n!);
    egf = intformal(intformal( deriv(deriv(U)) * exp(U) ));
    gf = serlaplace(egf) + 'c0;
    v = Vec(gf);  v[1]-='c0;  v
    /* Joerg Arndt, Apr 13 2013 */

Formula

E.g.f.: Double integral of U''(x)*exp(U(x)) dx^2 where U(x) is the e.g.f. for A000272.
a(n) = Sum_{k=0..n-2} binomial(n-2,k)*(k+2)^k*A001858(n-k-2).

A323673 Expansion of e.g.f. log(1 - LambertW(-x)*(2 + LambertW(-x))/2).

Original entry on oeis.org

0, 1, 0, 2, 7, 69, 696, 9400, 148506, 2753793, 58255840, 1388008566, 36768832200, 1072407094693, 34151921130432, 1179292944433500, 43892264744070736, 1751768399754149025, 74633720517351765504, 3380997879130123703818, 162286529338732345488000, 8227876237310253918100581
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 23 2019

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(log(1-LambertW(-x)*(2+LambertW(-x))/2),x=0,22),x,n),n=0..21); # Paolo P. Lava, Jan 28 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Log[1 - LambertW[-x] (2 + LambertW[-x])/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = n^(n - 2) - Sum[Binomial[n, k] (n - k)^(n - k - 2) k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 21}]

Formula

E.g.f.: log(1 + Sum_{k>=1} k^(k-2)*x^k/k!).
a(0) = 0; a(n) = A000272(n) - (1/n)*Sum_{k=1..n-1} binomial(n,k)*A000272(n-k)*k*a(k).
a(n) ~ 2 * n^(n-2) / 3. - Vaclav Kotesovec, Jan 24 2019

A378324 Number of cyclic edge cuts in the complete graph K_n.

Original entry on oeis.org

0, 0, 0, 0, 0, 10, 840, 57428, 4323760, 428530774, 66698370662, 19304350714396, 11435576322977378, 13998454986272457974, 34730539006860778387488, 172307954877667746584363616, 1699711619922134215461075979752, 33269167602899548362529088074829390
Offset: 1

Views

Author

Eric W. Weisstein, Nov 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    With[{n = 20},
     B[x_] := 1 + Log[Sum[2^Binomial[k, 2] x^k/k!, {k, 0, n}]];
     T[x_] := 1 - LambertW[-x] - LambertW[-x]^2/2;
     Rest@CoefficientList[Series[(Exp[B[x] - T[x]] - (B[x] - T[x]) - 1) Exp[T[x] - 1], {x, 0, n}], x] Range[n]!
    ]
  • PARI
    seq(n)={my(t=sum(k=1, n, k^(k-2)*x^k/k!, O(x*x^n)), c=log(sum(k=0, n, 2^binomial(k,2)*x^k/k!, O(x*x^n)))-t); Vec(serlaplace((exp(c)-1-c)*exp(t)), -n)} \\ Andrew Howroyd, Nov 26 2024

Formula

E.g.f.: (exp(B(x)-T(x))-(B(x)-T(x))-1)*exp(T(x)-1) where B(x) is the e.g.f. of A001187 and T(x) is the e.g.f. of A000272. - Andrew Howroyd, Nov 26 2024
a(n) = A006125(n) - A001858(n) - Sum_{k=1..n} binomial(n,k)*(A001187(k)-A000272(k))*A001858(n-k). - Andrew Howroyd, May 27 2025

Extensions

a(8) onwards from Andrew Howroyd, Nov 26 2024

A216413 Number of forests of trees on n labeled nodes in which each tree has a distinct number of vertices.

Original entry on oeis.org

1, 1, 1, 6, 28, 235, 2466, 31864, 488328, 8901981, 183417490, 4300791946, 111621409956, 3214239089659, 100662133475372, 3440691046061130, 126342964714732576, 4999000389915029881, 210671936366279249610, 9474491260037610708598, 450638933972015166026220
Offset: 0

Views

Author

Geoffrey Critzer, Sep 07 2012

Keywords

Crossrefs

Cf. A001858.

Programs

  • Maple
    a:= n-> n!*coeff(series(mul(1+k^(k-2)*x^k/k!, k=1..n), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 07 2012
  • Mathematica
    nn=20;p=Product[1+n^(n-2)x^n/n!,{n,1,nn}];Range[0,nn]! CoefficientList[Series[p,{x,0,nn}],x]

Formula

E.g.f.: Product_{n>=1} (1 + n^(n-2)*x^n/n!).

A332237 E.g.f.: -log(1 + LambertW(-x) * (2 + LambertW(-x)) / 2).

Original entry on oeis.org

1, 2, 8, 49, 409, 4356, 56734, 877094, 15742521, 322454800, 7434673036, 190792267128, 5398552673617, 167087263076384, 5617979017621650, 203987454978218416, 7957053981454827601, 331920300203780633856, 14746208516909980554736, 695208730205550274544000
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 07 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[-Log[1 + LambertW[-x] (2 + LambertW[-x])/2], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    a[n_] := a[n] = n^(n - 2) + (1/n) Sum[Binomial[n, k] (n - k)^(n - k - 2) k a[k], {k, 1, n - 1}]; Table[a[n], {n, 1, 20}]

Formula

E.g.f.: -log(1 - Sum_{k>=1} k^(k-2) * x^k / k!).
a(n) = n^(n-2) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * (n-k)^(n-k-2) * k * a(k).
a(n) ~ 2 * n^(n-2). - Vaclav Kotesovec, Feb 16 2020

A372153 Irregular triangular array read by rows. T(n,k) is the number of simple labeled graphs on [n] with circuit rank equal to k, n >= 1, 0 <= k <= binomial(n-1,2).

Original entry on oeis.org

1, 2, 7, 1, 38, 19, 6, 1, 291, 317, 235, 125, 45, 10, 1, 2932, 5582, 7120, 6915, 5215, 3057, 1371, 455, 105, 15, 1, 36961, 108244, 207130, 306775, 368046, 364539, 300342, 205940, 116910, 54362, 20356, 5985, 1330, 210, 21, 1, 561948, 2331108, 6176387, 12709760
Offset: 1

Views

Author

Geoffrey Critzer, Apr 20 2024

Keywords

Comments

The circuit rank r(G) of a simple graph G is the minimum number of edges that must be removed to break all of its cycles. r(G) = m - n + c where m,n,c are the number of edges, vertices, and connected components respectively of G.
Equivalently, T(n,k) is the number of simple labeled graphs on [n] such that the incidence matrix has nullity equal to k where the incidence matrix is viewed as a matrix with entries in the field GF(2).

Examples

			Triangle T(n,k) begins:
     1;
     2;
     7,    1;
    38,   19,    6,    1;
   291,  317,  235,  125,   45,   10,   1;
  2932, 5582, 7120, 6915, 5215, 3057, 1371, 455, 105, 15, 1;
  ...
		

References

  • R. Diestel, Graph Theory, Springer, 2017, pp. 23-27.

Crossrefs

Programs

  • Mathematica
    Needs["Combinatorica`"]; Map[Select[#, # > 0 &] &, Transpose[ Table[ Table[ Total[ Map[#[[1]] &,Select[Table[{n!/GraphData[{n, i}, "AutomorphismCount"], GraphData[{n, i}, "CyclomaticNumber"]}, {i, 1, NumberOfGraphs[n]}], #[[2]] == k &]]], {n, 1, 7}], {k, 0, 15}]]] // Grid
  • PARI
    T(n)={[Vecrev(p)| p<-Vec(-1+serlaplace(exp(y*log(sum(k=0, n, (1+y)^binomial(k,2)*x^k/k!/y^k, O(x*x^n))))))]}
    { foreach(T(7), row, print(row)) } \\ Andrew Howroyd, Jun 09 2025

Formula

T(n,0) = A001858(n).
E.g.f. for T(n,1): f(x)*g(x) where f(x) is the e.g.f. for A001858 and g(x) is the e.g.f. for A057500.
E.g.f.: exp(y*log(Sum_{k>=0} (1+y)^binomial(k,2)*(x/y)^k/k!)). - Andrew Howroyd, Jun 09 2025

Extensions

More terms from Andrew Howroyd, Jun 09 2025
Previous Showing 31-40 of 43 results. Next