cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-67 of 67 results.

A259476 Cayley's triangle of V numbers; triangle V(n,k), n >= 4, n <= k <= 2*n-4, read by rows.

Original entry on oeis.org

1, 2, 4, 3, 14, 14, 4, 32, 72, 48, 5, 60, 225, 330, 165, 6, 100, 550, 1320, 1430, 572, 7, 154, 1155, 4004, 7007, 6006, 2002, 8, 224, 2184, 10192, 25480, 34944, 24752, 7072, 9, 312, 3822, 22932, 76440, 148512, 167076, 100776, 25194, 10, 420, 6300, 47040, 199920, 514080, 813960, 775200, 406980, 90440, 11, 550, 9900, 89760, 471240, 1534896, 3197700, 4263600, 3517470, 1634380, 326876
Offset: 4

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Examples

			Triangle begins:
  1;
     2, 4;
        3, 14, 14;
            4, 32, 72,  48;
                5, 60, 225, 330,  165;
                    6, 100, 550, 1320, 1430, 572;
  ...
		

Crossrefs

Diagonals give A002057, A002058, A002059, A002060.
Row sums give A065096 (with a different offset).

Programs

  • Maple
    V := proc(n,x)
        local X,g,i ;
        X := x^2/(1-x) ;
        g := X^n ;
        for i from 1 to n-2 do
            g := diff(g,x) ;
        end do;
        x^2*g*2*(n-1)/n! ;
    end proc;
    A259476 := proc(n,k)
        V(k-n+2,x) ;
        coeftayl(%,x=0,n+2) ;
    end proc:
    for n from 4 to 14 do
        for k from n to 2*n-4 do
            printf("%d,",A259476(n,k)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 09 2015
  • Mathematica
    T[n_, m_] := 2 Binomial[m, n] Binomial[n-2, m-n+2]/(n-2);
    Table[T[n, m], {n, 4, 14}, {m, n, 2n-4}] // Flatten (* Jean-François Alcover, Apr 15 2023, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if n<4 then 0 else (2*binomial(m,n)*binomial(n-2,m-n+2))/(n-2); /* Vladimir Kruchinin, Jan 27 2022 */

Formula

G.f.: (1-x*y*(1+2*y)-sqrt(1-2*x*y*(1+2*y)+x^2*y^2))^2/(4*y^4*(1+y)^2). - Vladimir Kruchinin, Jan 27 2022
T(n,m) = 2*C(m,n)*C(n-2,m-n+2)/(n-2), n>=4. - Vladimir Kruchinin, Jan 27 2022

A268370 Number of North-East lattice paths from (0,0) to (n,n) that have exactly three east steps below the subdiagonal y = x-1.

Original entry on oeis.org

5, 24, 95, 356, 1309, 4784, 17472, 63920, 234498, 863056, 3187041, 11807740, 43885725, 163601760, 611625660, 2292665760, 8615485590, 32451382800, 122499978510, 463369822344, 1756113365874, 6667436894624, 25357090075600, 96589604043296, 368478056090340, 1407687015207200, 5384924914890213
Offset: 4

Views

Author

Ran Pan, Feb 03 2016

Keywords

Comments

This sequence is related to paired pattern P_1 in Pan and Remmel's link.

Crossrefs

Formula

G.f.: -((-1 + f(x) + 2*x)^2*(-1 + f(x) + 2*(f(x) - 2*x)*x))/(8*x^2), where f(x) = sqrt(1 - 4*x).

A097608 Triangle read by rows: number of Dyck paths of semilength n and having abscissa of the leftmost valley equal to k (if no valley, then it is taken to be 2n; 2<=k<=2n).

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 1, 0, 1, 5, 3, 3, 1, 1, 0, 1, 14, 9, 9, 4, 3, 1, 1, 0, 1, 42, 28, 28, 14, 10, 4, 3, 1, 1, 0, 1, 132, 90, 90, 48, 34, 15, 10, 4, 3, 1, 1, 0, 1, 429, 297, 297, 165, 117, 55, 35, 15, 10, 4, 3, 1, 1, 0, 1, 1430, 1001, 1001, 572, 407, 200, 125, 56, 35, 15, 10, 4, 3, 1, 1, 0, 1
Offset: 1

Views

Author

Emeric Deutsch, Aug 30 2004, Dec 22 2004

Keywords

Comments

A valley point is a path vertex that is preceded by a downstep and followed by an upstep (or by nothing at all). T(n,k) is the number of Dyck n-paths whose first valley point is at position k, 2<=k<=2n. - David Callan, Mar 02 2005
Row n has 2n-1 terms.
Row sums give the Catalan numbers (A000108).
Columns k=2 through 7 are respectively A000108, A000245, A071724, A002057, A071725, A026013. The nonzero entries in the even-indexed columns approach A088218 and similarly the odd-indexed columns approach A001791.

Examples

			Triangle begins
\ k..2...3...4...5...6...7....
n
1 |..1
2 |..1...0...1
3 |..2...1...1...0...1
4 |..5...3...3...1...1...0...1
5 |.14...9...9...4...3...1...1...0...1
6 |.42..28..28..14..10...4...3...1...1...0...1
7 |132..90..90..48..34..15..10...4...3...1...1...0...1
T(4,3)=3 because we have UU(DU)DDUD, UU(DU)DUDD and UU(DU)UDDD, where U=(1,1), D=(1,-1) (the first valley, with abscissa 3, is shown between parentheses).
		

Crossrefs

Programs

  • Maple
    G:=t^2*z*C*(1-t*z)/(1-t^2*z)/(1-t*z*C): C:=(1-sqrt(1-4*z))/2/z: Gser:=simplify(series(G,z=0,11)): for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: seq(seq(coeff(P[n],t^k),k=2..2*n),n=1..10);

Formula

G.f.=t^2*zC(1-tz)/[(1-t^2*z)(1-tzC)], where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.
G.f. Sum_{2<=k<=2n}T(n, k)x^n*y^k = ((1 - (1 - 4*x)^(1/2))*y^2*(1 - x*y))/(2*(1 - ((1 - (1 - 4*x)^(1/2))*y)/2)*(1 - x*y^2)). With G:= (1 - (1 - 4*x)^(1/2))/2, the gf for column 2k is G(G^(2k+1)(G-x)-x^(k+1)(1-G))/(G^2-x) and for column 2k+1 is G(G-x)(G^(2k+2)-x^(k+1))/(G^2-x). - David Callan, Mar 02 2005

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 23 2007

A317555 Triangle read by rows: T(n,k) is the number of preimages of the permutation 21345...n under West's stack-sorting map that have k+1 valleys (1 <= k <= floor((n-1)/2)).

Original entry on oeis.org

1, 4, 12, 2, 32, 16, 80, 80, 5, 192, 320, 60, 448, 1120, 420, 14, 1024, 3584, 2240, 224, 2304, 10752, 10080, 2016, 42, 5120, 30720, 40320, 13440, 840, 11264, 84480, 147840, 73920, 9240, 132, 24576, 225280, 506880, 354816, 73920, 3168
Offset: 3

Views

Author

Colin Defant, Sep 14 2018

Keywords

Comments

If pi is any permutation of [n] with exactly 1 descent, then the number of preimages of pi under West's stack-sorting map that have k+1 valleys is at most T(n,k).

Examples

			Triangle begins:
    1;
    4;
   12,    2;
   32,   16;
   80,   80,   5;
  192,  320,  60;
  448, 1120, 420, 14;
  ...
T(1,1) = 1 because the permutation 213 has one preimage under West's stack-sorting map (namely, 231), and this permutation has 2 valleys.
		

Crossrefs

Row sums give A002057.

Programs

  • Mathematica
    Flatten[Table[Table[Sum[Sum[(2^(i - 2 j + 1)) Binomial[i - 1, 2 j - 2]CatalanNumber[j - 1] (2^((n - 1 - i) - 2 (m + 1 - j) + 1)) Binomial[(n - 1 - i) - 1, 2 (m + 1 - j) - 2] CatalanNumber[(m + 1 - j) - 1], {j, 1, m}], {i, 1, n - 2}], {m, 1, Floor[(n - 1)/2]}], {n, 1, 10}]]

Formula

T(n,k) = Sum_{i=1..n-2} Sum_{j=1..k} V(i,j) * V(n-1-i,m+1-j), where V(i,j) = 2^{i-2j+1} * (1/j) * binomial(i-1, 2j-2) * binomial(2j-2, j-1) are the numbers found in the triangle A091894.

A335050 Array read by descending antidiagonals, T(n,k) is the number of nodes in the pill tree with initial conditions (n,k), for n and k >= 0.

Original entry on oeis.org

1, 2, 3, 3, 7, 8, 4, 12, 21, 22, 5, 18, 40, 63, 64, 6, 25, 66, 130, 195, 196, 7, 33, 100, 231, 427, 624, 625, 8, 42, 143, 375, 803, 1428, 2054, 2055, 9, 52, 196, 572, 1376, 2805, 4860, 6916, 6917, 10, 63, 260, 833, 2210, 5016, 9877, 16794, 23712, 23713
Offset: 0

Views

Author

Michel Marcus, May 21 2020

Keywords

Comments

See Bayer and Brandt for a description of the pill tree.

Examples

			The array begins:
    1    2    3    4     5     6 ...
    3    7   12   18    25    33 ...
    8   21   40   66   100   143 ...
   22   63  130  231   375   572 ...
   64  195  427  803  1376  2210 ...
  196  624 1428 2805  5016  8398 ...
  ...
		

Crossrefs

Cf. A000108, A014138 (column 1), A120304 (column 2).
Cf. A002057 (first differences of column 3).

Programs

  • PARI
    T(n,k) = sum(j=0, n, binomial(2*j+k+2, j+1) - binomial(2*j+k+2, j));

Formula

T(0,k) = k+1; T(n,0) = 1 + T(n-1,1); T(n,k) = 1 + T(n-1,k+1) + T(n,k-1) for n and k > 0.
T(n,k) = Sum_{j=0..n} (binomial(2*j+k+2, j+1) - binomial(2*j+k+2, j)).

A339028 Triangle T(n,m) = 3*(m+1)*C(n+m+3,m)*C(2*n+2,n-m)/((n+m+3)*C(n+1,m)).

Original entry on oeis.org

1, 3, 3, 9, 12, 9, 28, 42, 42, 28, 90, 144, 162, 144, 90, 297, 495, 594, 594, 495, 297, 1001, 1716, 2145, 2288, 2145, 1716, 1001, 3432, 6006, 7722, 8580, 8580, 7722, 6006, 3432, 11934, 21216, 27846, 31824, 33150, 31824, 27846, 21216, 11934, 41990, 75582, 100776, 117572, 125970, 125970, 117572, 100776, 75582, 41990
Offset: 0

Views

Author

Vladimir Kruchinin, Nov 20 2020

Keywords

Examples

			1,
3,3,
9,12,9,
28,42,42,28,
90,144,162,144,
90,297,495,594,594,495,297
		

Crossrefs

Cf. A000108, A000245, A002057 (row sums), A168256, A120406,

Programs

  • Maxima
    T(n,m):=if n
    				

Formula

G.f. ((sqrt(1-4*x*y)-sqrt(1-4*x))/(2*(x-x*y)))^3.

A376319 A Catalan-like sequence formed by summing the truncation of the terms of the fourth convolution of the Catalan Triangle where the number of row terms are truncated to ceiling((n+4)*log(3)/log(2)) - (n+4).

Original entry on oeis.org

1, 4, 14, 34, 103, 228, 665, 2096, 4787, 14239, 31330, 91728, 199328, 580128, 1834665, 4223092, 12667903, 28207395, 83435822, 267154051, 623837740, 1891453021, 4265101202, 12735718304, 28359351604, 84126071303, 270338873771, 634653510356, 1933488496208
Offset: 1

Views

Author

Rob Bunce, Sep 20 2024

Keywords

Comments

a(1) = 1, all other rows are summed following application of the truncation formula.
Equivalent to truncation of A002057 starting from the n(4) term.

Examples

			When n=6, number of terms is restricted to 6, dropping 2 terms from the standard triangle; ceiling((6+4)*log(3)/log(2)) - (6+4) = 6.
When n=9, number of terms is restricted to 8, dropping 3 terms; ceiling((9+4)*log(3)/log(2)) - (9+4) = 8.
etc.
Truncating A002057 at this point, with dropped terms indicated by - and summing the remaining triangle terms in the normal way results in:
 n   sum   truncated triangle terms
 1     1 = 1;
 2     4 = 1, 1,  1,   1;
 3    14 = 1, 2,  3,   4,   4;
 4    34 = 1, 3,  6,  10,  14,    -;
 5   103 = 1, 4, 10,  20,  34,   34,    -;
 6   228 = 1, 5, 15,  35,  69,  103,    -,    -;
 7   665 = 1, 6, 21,  56, 125,  228,  228,    -,    -;
 8  2096 = 1, 7, 28,  84, 209,  437,  665,  665,    -, -;
 9  4787 = 1, 8, 36, 120, 329,  766, 1431, 2096,    -, -, -;
10 14239 = 1, 9, 45, 165, 494, 1260, 2691, 4787, 4787, -, -, -;
...
		

Crossrefs

Cf. A009766, A000108, A002057, A374244, Half Catalan A000992.

Programs

  • PARI
    lista(nn) = {
    my(terms(j)=ceil((j+4)*log(3)/log(2)) - (j+4));
    my(T=vector(nn));
    my(S=vector(nn));
    for(y=1, nn,
      if(y==1,
          T[1]=[1];
          S[1]=1		
        ,
          my(k=terms(y));
          T[y]=vector(k);
          for(i=1, k, if(i==1,T[y][i]=1,if(i<=length(T[y-1]),T[y][i]=T[y-1][i]+T[y][i-1],T[y][i]=T[y][i-1])));
          S[y]=vecsum(T[y])
        );
      );
    S;
    }

Formula

Same as for a normal fourth convolution Catalan triangle T(n,k), read by rows, each term is the sum of the entries above and to the left, i.e., T(n,k) = Sum_{j=0..k} T(n-1,j) but where j is limited to the truncated length.
Previous Showing 61-67 of 67 results.