A261042
Generating function g(0) where g(k) = 1 - x*2*(k+1)*(k+2)/(x*2*(k+1)*(k+2) - 1/g(k+1)).
Original entry on oeis.org
1, 4, 64, 2176, 126976, 11321344, 1431568384, 243680935936, 53725527801856, 14893509177769984, 5070334006399074304, 2079588119566033616896, 1011390382859091900891136, 575501120339508919401447424, 378784713733072451034702413824, 285539131625477547496925147693056
Offset: 0
-
eulerCF := proc(f, len) local g, k; g := 1;
for k from len-2 by -1 to 0 do g := 1 - f(k)/(f(k)-1/g) od;
PolynomialTools:-CoefficientList(convert(series(g, x, len), polynom), x) end:
A261042_list := len -> eulerCF(k -> x*2*(k+1)*(k+2), len): A261042_list(16);
# Alternative:
ser := series(cos(x/sqrt(2))^(-2), x, 32):
seq(2^(2*n)*(2*n)!*coeff(ser, x, 2*n), n = 0..15); # Peter Luschny, Sep 03 2022
-
fracGen[f_, len_] := Module[{g, k}, g[len] = 1; For[k = len-1, k >= 0, k--, g[k] = 1-f[k]/(f[k]-1/g[k+1])]; CoefficientList[g[0] + O[x]^(len+1), x] ]; A261042list[len_] := fracGen[x*2*(#+1)*(#+2)&, len-1]; A261042list[16] (* Jean-François Alcover, Aug 08 2015, after Peter Luschny *)
-
def A261042_list(len):
f = lambda k: x*2*(k+1)*(k+2)
g = 1
for k in range(len-2,-1,-1):
g = (1-f(k)/(f(k)-1/g)).simplify_rational()
return taylor(g, x, 0, len-1).list()
A261042_list(16)
A325222
E.g.f.: D(x,k) = dn( i * Integral C(x,k) dx, k) such that C(x,k) = cn( i * Integral C(x,k) dx, k), where D(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n)*k^(2*j)/(2*n)!, as a triangle of coefficients T(n,j) read by rows.
Original entry on oeis.org
1, 0, 1, 0, 8, 1, 0, 136, 88, 1, 0, 3968, 6240, 816, 1, 0, 176896, 513536, 195216, 7376, 1, 0, 11184128, 51880064, 39572864, 5352544, 66424, 1, 0, 951878656, 6453433344, 8258202240, 2458228480, 139127640, 597864, 1, 0, 104932671488, 978593947648, 1889844670464, 994697838080, 137220256000, 3535586112, 5380832, 1, 0, 14544442556416, 178568645312512, 485265505927168, 398800479698944, 102950036177920, 7233820923904, 88992306208, 48427552, 1
Offset: 0
E.g.f.: D(x,k) = 1 + k^2*x^2/2! + (8*k^2 + 1*k^4)*x^4/4! + (136*k^2 + 88*k^4 + 1*k^6)*x^6/6! + (3968*k^2 + 6240*k^4 + 816*k^6 + 1*k^8)*x^8/8! + (176896*k^2 + 513536*k^4 + 195216*k^6 + 7376*k^8 + 1*k^10)*x^10/10! + (11184128*k^2 + 51880064*k^4 + 39572864*k^6 + 5352544*k^8 + 66424*k^10 + 1*k^12)*x^12/12! + (951878656*k^2 + 6453433344*k^4 + 8258202240*k^6 + 2458228480*k^8 + 139127640*k^10 + 597864*k^12 + 1*k^14)*x^14/14! + ...
such that D(x,k) = dn( i * Integral C(x,k) dx, k) where C(x,k) = cn( i * Integral C(x,k) dx, k).
This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. D(x,k) begins:
1;
0, 1;
0, 8, 1;
0, 136, 88, 1;
0, 3968, 6240, 816, 1;
0, 176896, 513536, 195216, 7376, 1;
0, 11184128, 51880064, 39572864, 5352544, 66424, 1;
0, 951878656, 6453433344, 8258202240, 2458228480, 139127640, 597864, 1;
0, 104932671488, 978593947648, 1889844670464, 994697838080, 137220256000, 3535586112, 5380832, 1;
0, 14544442556416, 178568645312512, 485265505927168, 398800479698944, 102950036177920, 7233820923904, 88992306208, 48427552, 1; ...
RELATED SERIES.
The related series S(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
S(x,k) = x + (2 + 1*k^2)*x^3/3! + (16 + 28*k^2 + 1*k^4)*x^5/5! + (272 + 1032*k^2 + 270*k^4 + 1*k^6)*x^7/7! + (7936 + 52736*k^2 + 36096*k^4 + 2456*k^6 + 1*k^8)*x^9/9! + (353792 + 3646208*k^2 + 4766048*k^4 + 1035088*k^6 + 22138*k^8 + 1*k^10)*x^11/11! + (22368256 + 330545664*k^2 + 704357760*k^4 + 319830400*k^6 + 27426960*k^8 + 199284*k^10 + 1*k^12)*x^13/13! + (1903757312 + 38188155904*k^2 + 120536980224*k^4 + 93989648000*k^6 + 18598875760*k^8 + 702812568*k^10 + 1793606*k^12 + 1*k^14)*x^15/15! + ...
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (5 + 4*k^2)*x^4/4! + (61 + 148*k^2 + 16*k^4)*x^6/6! + (1385 + 6744*k^2 + 2832*k^4 + 64*k^6)*x^8/8! + (50521 + 410456*k^2 + 383856*k^4 + 47936*k^6 + 256*k^8)*x^10/10! + (2702765 + 32947964*k^2 + 54480944*k^4 + 17142784*k^6 + 780544*k^8 + 1024*k^10)*x^12/12! + (199360981 + 3402510924*k^2 + 8760740640*k^4 + 5199585280*k^6 + 686711040*k^8 + 12555264*k^10 + 4096*k^12)*x^14/14! + ...
which also satisfies C(x,k) = cn( i * Integral C(x,k) dx, k).
-
N=10;
{S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C^2*D +O(x^(2*N+1))); C = 1 + intformal(S*C*D); D = 1 + k^2*intformal(S*C^2)); }
{T(n,j) = (2*n)!*polcoeff(polcoeff(D, 2*n, x), 2*j, k)}
for(n=0, N, for(j=0, n, print1( T(n,j), ", ")) ; print(""))
A087736
Triangle T(n,k) read by rows given by [0, 1, 3, 6, 10, 15, 21, ...] DELTA [1, 3, 6, 10, 15, 21, 28,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 4, 0, 4, 23, 34, 0, 34, 249, 606, 496, 0, 496, 4354, 14181, 20434, 11056, 0, 11056, 112238, 450097, 894838, 885032, 349504, 0, 349504, 4008024, 18911670, 47136095, 65613780, 48468804, 14873104
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 4;
0, 4, 23, 34;
0, 34, 249, 606, 496;
0, 496, 4354, 14181, 20434, 11056;
0, 11056, 112238, 450097, 894838, 885032, 349504;
0, 349504, 4008024, 18911670, 47136095, 65613780, 48468804, 14873104 ;...
Diagonals give
A002105: [1, 1, 4, 34, 496, ...] Row sums give
A000364 : [1, 1, 5, 61, 1385, ...] Euler numbers.
A177389
Expansion of o.g.f.: Sum_{n>=0} Product_{k=1..n} tanh(k*arctanh(x)).
Original entry on oeis.org
1, 1, 2, 6, 22, 98, 514, 3110, 21334, 163650, 1388162, 12902086, 130391830, 1423632546, 16699055490, 209432697830, 2796597560150, 39613075175554, 593253347702530, 9366042608039814, 155466234198142998
Offset: 0
O.g.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 98*x^5 + 514*x^6 + ...
Let G(x) = Sum_{n>=0} A002105(n+1)*x^n/n!, so that
G(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 496*x^4/4! + 11056*x^5/5! + ...
then A(x) = G(arctanh(x)).
G.f.: 1 + x + x*(2x/(1+x^2)) + x*(2x/(1+x^2))*((3x+x^3)/(1+3x^2)) + x*(2x/(1+x^2))*((3x+x^3)/(1+3x^2))*((4x+4x^3)/(1+6x^2+x^4)) + ... - _Paul D. Hanna_, May 22 2010
-
{a(n)=local(X=x+x*O(x^n),Egf);Egf=sum(m=0,n,prod(k=1,m,tanh(k*atanh(X))));polcoeff(Egf,n)}
-
{a(n)=polcoeff(sum(m=0,n,prod(k=1,m,((1+x)^k-(1-x)^k)/((1+x)^k+(1-x)^k+x*O(x^n)))),n)} \\ Paul D. Hanna, May 22 2010
A218260
E.g.f.: Sum_{n>=0} Product_{k=1..n} tanh((2*k-1)*x).
Original entry on oeis.org
1, 1, 6, 88, 2280, 92416, 5393376, 428428288, 44450655360, 5836916064256, 946245183223296, 185613384522661888, 43330332249288714240, 11871318610487327850496, 3772031142226151742038016, 1375871976238663365598117888
Offset: 0
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 88*x^3/3! + 2280*x^4/4! + 92416*x^5/5! +...
where
A(x) = 1 + tanh(x) + tanh(x)*tanh(3*x) + tanh(x)*tanh(3*x)*tanh(5*x) + tanh(x)*tanh(3*x)*tanh(5*x)*tanh(7*x) +...
-
{a(n)=local(X=x+x*O(x^n),Egf);Egf=sum(m=0,n,prod(k=1,m,tanh((2*k-1)*X)));n!*polcoeff(Egf,n)}
for(n=0,30,print1(a(n),", "))
A305533
Expansion of 1/(1 - x/(1 - 1*x/(1 - 3*x/(1 - 6*x/(1 - 10*x/(1 - ... - (k*(k + 1)/2)*x/(1 - ...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 2, 7, 47, 592, 12287, 374857, 15639302, 851542747, 58536120467, 4953497262712, 505784457870707, 61300510121162077, 8698776162350603222, 1428545280744850604767, 268795232754158224790687, 57445320930331531152213232, 13837791987711934467999437927
Offset: 0
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (((k - n - 1)*(k - n)) / 2) * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..18); # Peter Luschny, Oct 01 2023
-
nmax = 18; CoefficientList[Series[1/(1 - x/(1 + ContinuedFractionK[-k (k + 1)/2 x, 1, {k, 1, nmax}])), {x, 0, nmax}], x]
nmax = 18; CoefficientList[Series[1/(1 - Sum[PolyGamma[2 k - 1, 1/2]/(2^(k - 2) Pi^(2 k)) x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[2^k (2^(2 k) - 1) Abs[BernoulliB[2 k]]/k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
A309522
Generalized Blasius numbers, square array read by ascending antidiagonals, A(n, k) for n, k >= 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 4, 6, 14, 1, 1, 11, 34, 24, 42, 1, 1, 36, 375, 496, 120, 132, 1, 1, 127, 6306, 27897, 11056, 720, 429, 1, 1, 463, 129256, 3156336, 3817137, 349504, 5040, 1430, 1, 1, 1717, 2877883, 514334274, 3501788976, 865874115, 14873104, 40320, 4862
Offset: 0
Table A(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
[0] 1, 1, 2, 5, 14, 42, 132, ... A000108
[1] 1, 1, 2, 6, 24, 120, 720, ... A000142
[2] 1, 1, 4, 34, 496, 11056, 349504, ... A002105
[3] 1, 1, 11, 375, 27897, 3817137, 865874115, ... A018893
[4] 1, 1, 36, 6306, 3156336, 3501788976, 7425169747776, ...
A260878|
- Heinrich Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. u. Physik 56 (1908), 1-37; see p. 8. [This article was based on his PhD thesis. He corrected c_6 = A(n=3, k=6) but his "correction" of c_7 = A(n=3, k=7) was not right!]
- Heinrich Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. u. Physik 56 (1908), 1-37 [English translation by J. Vanier on behalf of the National Advisory Committee for Aeronautics (NACA), 1950]; see p. 8. [This is a translation of Blasius' article. The value of c_6 = A(n=3, k=6) was corrected in the article and the translation, but the "correction" for c_7 = A(n=3, k=7) in both documents is wrong.]
- Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014.
- Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, Discrete Mathematics 339(1) (2016), 227-254.
- Hans Salié, Über die Koeffizienten der Blasiusschen Reihen, Math. Nachr. 14 (1955), 241-248 (1956). [In the article the array is denoted by c^{(n)}_v for n, v >= 1. We have A(n, k) = c^{(n)}_{k+1} for n >= 1 and k >= 0. The Catalan numbers (row n = 0 for A(n, k)) do not appear in Salié's article.]
-
A := proc(n, k) option remember; if k = 0 then 1 else
add(binomial(n*k-1, n*v)*A(n, v)*A(n, k-1-v), v=0..k-1) fi end:
seq(seq(A(n-k, k), k=0..n), n=0..9);
-
A[n_, k_] := A[n, k] = If[k == 0, 1, Sum[Binomial[n*k - 1, n*v]*A[n, v]* A[n, k - 1 - v], {v, 0, k - 1}]];
Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 26 2019, from Maple *)
A113897
Triangle read by rows: number of simsun n-permutations with k descents.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 11, 4, 1, 26, 34, 1, 57, 180, 34, 1, 120, 768, 496, 1, 247, 2904, 4288, 496, 1, 502, 10194, 28768, 11056, 1, 1013, 34096, 166042, 141584, 11056, 1, 2036, 110392, 868744, 1372088, 349504, 1, 4083, 349500, 4247720, 11204160, 6213288, 349504
Offset: 1
Chak-On Chow (cchow(AT)alum.mit.edu), Jan 28 2006
Triangle begins
1;
1, 1;
1, 4;
1, 11, 4;
1, 26, 34;
1, 57, 180, 34;
...
- Chak-On Chow and Wai Chee Shiu, Counting Simsun Permutations by Descents, Ann. Comb. 15, 625-635 (2011). See p. 627.
- Ming-Jian Ding and Bao-Xuan Zhu, Some results related to Hurwitz stability of combinatorial polynomials, Advances in Applied Mathematics, Volume 152, (2024), 102591. See p. 35.
- R. P. Stanley, Flag f-vectors and the cd-index, Math. Zeitschrift 216 (1994), 483-499.
- S. Sundaram, Plethysm, Partitions with an Even Number of Blocks and Euler Numbers, in "Formal Power Series and Algebraic Combinatorics 1994," DIMACS Series in Discrete Mathematics and Theoretical Computer Science 24, AMS (1996).
-
Table[SeriesCoefficient[(2t-1)*(Sec[x*Sqrt[2t-1]/2]/(Sqrt[2t-1]- Tan[x*Sqrt[2t-1]/2]))^2,{x,0,n},{t,0,k}]n!,{n,11},{k,0,Floor[n/2]}]//Flatten (* Stefano Spezia, Aug 09 2023 *)
A187802
E.g.f.: Sum_{n>=0} Product_{k=1..n} tanh(n*k*x).
Original entry on oeis.org
1, 1, 16, 970, 146176, 44183536, 23478931456, 20054284098640, 25800626187206656, 47592874959658936576, 121099500781576410628096, 411996060596290629454466560, 1826628916277875316651443879936, 10329535274999799577516027932553216, 73156530986984637348101331408897703936
Offset: 0
E.g.f.: A(x) = 1 + x + 16*x^2/2! + 970*x^3/3! + 146176*x^4/4! +...
where
A(x) = 1 + tanh(x) + tanh(2*1*x)*tanh(2*2*x) + tanh(3*1*x)*tanh(3*2*x)*tanh(3*3*x) + tanh(4*1*x)*tanh(4*2*x)*tanh(4*3*x)*tanh(4*4*x) +...
-
With[{nn=20},CoefficientList[Series[Sum[Product[Tanh[n*k*x],{k,n}],{n,0,nn}],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 26 2024 *)
-
{a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, prod(k=1, m, tanh(m*k*X))); n!*polcoeff(Egf, n)}
for(n=0, 20, print1(a(n), ", "))
A203827
Table of coefficients of up-down polynomials P_n(m) = Sum_{i=0..floor(log_2(2n))} binomial(m,i).
Original entry on oeis.org
1, -1, 1, -1, 0, 1, 1, -1, 1, -1, 0, 0, 1, 1, -1, 0, 2, 1, 0, -1, 2, -1, 1, -1, 1, -1, 0, 0, 0, 1, 1, -1, 0, 0, 3, 1, 0, -1, 0, 5, -1, 1, -1, 0, 3, 1, 0, 0, -1, 3, -1, 1, 0, -2, 5, -1, 0, 1, -2, 3, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 4, 1, 0, -1, 0, 0, 9
Offset: 0
Table begins
1
-1 1
-1 0 1
1 -1 1
-1 0 0 1
1 -1 0 2
1 0 -1 2
-1 1 -1 1
-1 0 0 0 1
1 -1 0 0 3
1 0 -1 0 5
-1 1 -1 0 3
1 0 0 -1 3
-1 1 0 -2 5
-1 0 1 -2 3
1 -1 1 -1 1
-1 0 0 0 0 1
1 -1 0 0 0 4
1 0 -1 0 0 9
- I. Niven, A combinatorial problem of finite sequences, Nieuw Arch. Wisk. 16(1968), 116-123.
Comments