cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 165 results. Next

A386691 Decimal expansion of the volume of a parabidiminished rhombicosidodecahedron with unit edges.

Original entry on oeis.org

3, 6, 9, 6, 7, 2, 3, 3, 1, 4, 5, 8, 3, 1, 5, 8, 0, 8, 0, 3, 4, 0, 9, 7, 8, 0, 5, 7, 2, 7, 6, 0, 6, 3, 5, 2, 9, 5, 3, 3, 8, 4, 8, 6, 3, 3, 0, 0, 9, 6, 0, 4, 7, 7, 0, 2, 2, 5, 7, 4, 7, 7, 0, 4, 5, 0, 8, 7, 6, 7, 4, 3, 8, 0, 3, 1, 5, 0, 4, 0, 8, 2, 8, 4, 5, 3, 4, 5, 3, 4
Offset: 2

Views

Author

Paolo Xausa, Jul 30 2025

Keywords

Comments

The parabidiminished rhombicosidodecahedron is Johnson solid J_80.
Also the volume of a metabidiminished rhombicosidodecahedron and a gyrate bidiminished rhombicosidodecahedron (Johnson solids J_81 and J_82, respectively) with unit edges.

Examples

			36.967233145831580803409780572760635295338486330...
		

Crossrefs

Cf. A386692 (surface area).

Programs

  • Mathematica
    First[RealDigits[5/3*(11 + 5*Sqrt[5]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J80", "Volume"], 10, 100]]

Formula

Equals (5/3)*(11 + 5*sqrt(5)) = (5/3)*(11 + 5*A002163).
Equals A185093 - 2*A179590.
Equals (50/3)*A001622 + 10 = A134946*100 + 10.
Equals the largest root of 9*x^2 - 330*x - 100.

A386693 Decimal expansion of the volume of a tridiminished rhombicosidodecahedron with unit edges.

Original entry on oeis.org

3, 4, 6, 4, 3, 1, 8, 7, 8, 2, 7, 4, 9, 8, 3, 8, 7, 6, 7, 2, 4, 7, 0, 3, 3, 1, 4, 6, 0, 2, 7, 3, 1, 1, 7, 8, 0, 5, 0, 4, 4, 7, 4, 0, 7, 5, 7, 0, 2, 1, 6, 9, 7, 2, 1, 9, 4, 1, 0, 2, 1, 2, 2, 1, 4, 8, 1, 3, 9, 9, 3, 7, 6, 3, 2, 2, 3, 1, 7, 0, 8, 9, 5, 5, 1, 0, 5, 1, 0, 4
Offset: 2

Views

Author

Paolo Xausa, Jul 31 2025

Keywords

Comments

The tridiminished rhombicosidodecahedron is Johnson solid J_83.

Examples

			34.64318782749838767247033146027311780504474075702...
		

Crossrefs

Cf. A386694 (surface area).

Programs

  • Mathematica
    First[RealDigits[35/2 + 23/3*Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J83", "Volume"], 10, 100]]

Formula

Equals 35/2 + (23/3)*sqrt(5) = 35/2 + (23/3)*A002163.
Equals A185093 - 3*A179590.
Equals the largest root of 36*x^2 - 1260*x + 445.

A004559 Expansion of sqrt(5) in base 6.

Original entry on oeis.org

2, 1, 2, 2, 5, 5, 3, 5, 5, 3, 1, 5, 1, 3, 0, 3, 3, 4, 3, 1, 2, 4, 5, 1, 4, 3, 2, 0, 3, 4, 0, 2, 4, 0, 1, 3, 4, 5, 4, 0, 2, 5, 2, 1, 3, 2, 2, 3, 2, 0, 3, 3, 2, 5, 0, 2, 1, 5, 4, 4, 1, 1, 0, 1, 3, 2, 1, 5, 5, 0, 1, 0, 0, 0, 4, 5, 3, 1, 4, 1, 1, 2, 5, 1, 4, 2, 5, 0, 0, 0, 0, 1, 1, 3, 4, 5, 1, 3, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    Prune(Reverse(IntegerToSequence(Isqrt(5*6^200), 6))); // Vincenzo Librandi, Jan 08 2018
  • Mathematica
    RealDigits[Sqrt[5],6,120][[1]] (* Harvey P. Dale, Mar 24 2012 *)

Extensions

Updated by Alois P. Heinz at the suggestion of Kevin Ryde, Feb 19 2012

A023117 Signature sequence of sqrt(5) (arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i's is the signature of x).

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 5, 3, 1, 6, 4, 2, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2, 11, 9, 7, 5, 3, 12, 1, 10, 8, 6, 4, 13, 2, 11, 9, 7, 5, 14, 3, 12, 1, 10, 8, 6, 15, 4, 13, 2, 11, 9, 7, 16, 5, 14, 3, 12, 1, 10, 8, 17, 6, 15, 4, 13, 2, 11, 9, 18, 7, 16, 5, 14, 3, 12, 1, 10
Offset: 1

Views

Author

Keywords

References

  • C. Kimberling, "Fractal Sequences and Interspersions", Ars Combinatoria, vol. 45 p 157 1997.

Crossrefs

Cf. A002163.

A145434 Decimal expansion of Sum_{n>=1} (-1)^(n-1)*n^2/binomial(2n,n).

Original entry on oeis.org

1, 2, 5, 5, 6, 7, 2, 8, 4, 7, 2, 2, 8, 7, 9, 6, 7, 6, 8, 8, 8, 8, 4, 5, 3, 4, 1, 3, 6, 3, 9, 5, 1, 5, 6, 5, 9, 6, 6, 0, 3, 4, 3, 4, 5, 3, 9, 6, 7, 7, 6, 8, 2, 7, 6, 1, 9, 4, 3, 9, 5, 1, 1, 6, 8, 0, 5, 9, 5, 1, 0, 2, 7, 6, 3, 1, 0, 9, 4, 4, 3, 0, 9, 1, 0, 8, 0, 7, 7, 8, 8, 2, 4
Offset: 0

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Comments

The numerator in the Apelblat table lacks the square (typo).

Examples

			0.125567284722879676...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.40.

Crossrefs

Programs

  • Maple
    evalf( 4/25-4/125*5^(1/2)*log(1/2+1/2*5^(1/2)), 120) ;
  • Mathematica
    RealDigits[HypergeometricPFQ[{2, 2, 2}, {1, 3/2}, -1/4]/2, 10, 93] // First
    (* or *) RealDigits[4/25 - 4*Sqrt[5]*Log[GoldenRatio]/125, 10, 93] // First (* Jean-François Alcover, Feb 13 2013, updated Oct 27 2014 *)

Formula

Equals 4*(5-A002163*A002390)/125.

A176324 Decimal expansion of (15+7*sqrt(5))/6.

Original entry on oeis.org

5, 1, 0, 8, 7, 4, 5, 9, 7, 3, 7, 4, 9, 7, 5, 4, 6, 4, 5, 8, 1, 0, 7, 0, 2, 6, 1, 3, 5, 1, 9, 8, 2, 2, 2, 7, 4, 6, 8, 0, 7, 2, 1, 4, 1, 9, 5, 4, 6, 7, 8, 0, 0, 1, 1, 6, 4, 9, 3, 8, 0, 1, 1, 9, 6, 4, 5, 6, 0, 7, 7, 4, 6, 5, 7, 7, 4, 3, 9, 0, 4, 9, 3, 1, 6, 8, 1, 6, 8, 0, 9, 7, 7, 5, 2, 4, 5, 9, 8, 7, 4, 6, 4, 4, 2
Offset: 1

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of (15+7*sqrt(5))/6 is A010720.
Volume of a triangular hebesphenorotunda (Johnson solid J_92) with unit edges. - Paolo Xausa, Aug 02 2025

Examples

			5.10874597374975464581...
		

Crossrefs

Cf. A002163 (decimal expansion of sqrt(5)), A010720 (repeat 5, 9).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (15+7*Sqrt(5))/6; // G. C. Greubel, Dec 05 2019
    
  • Maple
    evalf( (15+7*sqrt(5))/6, 100); # G. C. Greubel, Dec 05 2019
  • Mathematica
    RealDigits[(15+7Sqrt[5])/6,10,120][[1]]  (* Harvey P. Dale, Apr 18 2011 *)
  • PARI
    default(realprecision, 100); (15+7*sqrt(5))/6 \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    numerical_approx((15+7*sqrt(5))/6, digits=100) # G. C. Greubel, Dec 05 2019

A176453 Decimal expansion of 4+2*sqrt(5).

Original entry on oeis.org

8, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8, 2, 8, 8, 1, 6, 7, 5, 7, 5, 6, 4, 5, 4, 9, 9, 3, 9, 0, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 20 2010

Keywords

Comments

Continued fraction expansion of 4+2*sqrt(5) is A010698 preceded by 8.
a(n) = A010476(n) = A020762(n-1) = A134974(n) for n > 1.
Rajan (2010) claims the variance of a discrete distribution generated by the linear convolution of Fibonacci sequence with itself, saturates to a constant of value 8.4721359. [From Jonathan Vos Post, May 10 2010]

Examples

			4+2*sqrt(5) = 8.47213595499957939281...
		

Crossrefs

Cf. A002163 (decimal expansion of sqrt(5)), A010476 (decimal expansion of sqrt(20)), A020762 (decimal expansion of 1/sqrt(5)), A134974 (decimal expansion of 8/(1+sqrt(5))), A010698 (repeat 2, 8).

Programs

  • Mathematica
    RealDigits[4+2Sqrt[5],10,120][[1]] (* Harvey P. Dale, Sep 08 2018 *)

A176461 Decimal expansion of sqrt(105).

Original entry on oeis.org

1, 0, 2, 4, 6, 9, 5, 0, 7, 6, 5, 9, 5, 9, 5, 9, 8, 3, 8, 3, 2, 2, 1, 0, 3, 8, 6, 8, 0, 5, 2, 1, 0, 5, 1, 9, 9, 0, 7, 3, 5, 0, 3, 2, 6, 6, 3, 4, 5, 4, 8, 3, 2, 9, 2, 9, 5, 4, 1, 9, 7, 8, 4, 9, 9, 8, 9, 0, 3, 4, 7, 9, 8, 5, 7, 0, 5, 3, 5, 4, 0, 7, 2, 9, 2, 7, 2, 3, 1, 6, 2, 8, 3, 7, 8, 5, 4, 6, 7, 3, 6, 9, 5, 4, 4
Offset: 2

Views

Author

Klaus Brockhaus, Apr 20 2010

Keywords

Comments

Continued fraction expansion of sqrt(105) is A040094.

Examples

			sqrt(105) = 10.24695076595959838322...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[105],10,120][[1]] (* Harvey P. Dale, Aug 03 2016 *)

A176524 Decimal expansion of sqrt(235).

Original entry on oeis.org

1, 5, 3, 2, 9, 7, 0, 9, 7, 1, 6, 7, 5, 5, 8, 9, 1, 6, 5, 6, 5, 5, 3, 6, 8, 1, 9, 9, 1, 5, 7, 2, 0, 4, 8, 7, 1, 0, 6, 9, 3, 2, 7, 3, 2, 5, 9, 5, 5, 6, 4, 6, 9, 5, 8, 5, 6, 6, 4, 7, 9, 4, 0, 7, 0, 8, 4, 7, 9, 4, 9, 3, 1, 4, 6, 6, 6, 5, 1, 6, 9, 7, 1, 8, 8, 2, 0, 2, 4, 3, 7, 0, 5, 5, 6, 7, 8, 2, 2, 9, 4, 2, 1, 5, 6
Offset: 2

Views

Author

Klaus Brockhaus, Apr 23 2010

Keywords

Comments

Continued fraction expansion of sqrt(235) is A040219.

Examples

			sqrt(235) = 15.32970971675589165655...
		

Crossrefs

Cf. A002163 (decimal expansion of sqrt(5)), A010501 (decimal expansion of sqrt(47)), A176523 (decimal expansion of (45+3*sqrt(235))/10), A040219 (15 followed by (repeat 3, 30)).

Programs

  • Mathematica
    RealDigits[Sqrt[235],10,120][[1]] (* Harvey P. Dale, Mar 12 2015 *)

A176980 Decimal expansion of sqrt(365).

Original entry on oeis.org

1, 9, 1, 0, 4, 9, 7, 3, 1, 7, 4, 5, 4, 2, 8, 0, 0, 1, 7, 9, 1, 6, 8, 2, 9, 5, 7, 5, 2, 4, 9, 6, 6, 9, 1, 4, 1, 5, 3, 9, 6, 4, 7, 2, 3, 3, 1, 7, 6, 7, 9, 9, 7, 3, 6, 5, 2, 5, 8, 0, 8, 2, 1, 3, 4, 8, 7, 0, 0, 0, 1, 0, 7, 4, 9, 2, 6, 5, 5, 2, 1, 2, 9, 2, 6, 0, 7, 3, 2, 6, 4, 8, 2, 8, 5, 6, 5, 5, 6, 7, 9, 8, 9, 5, 1
Offset: 2

Views

Author

Klaus Brockhaus, Apr 30 2010

Keywords

Comments

Continued fraction expansion of sqrt(365) is A040345.

Examples

			sqrt(365) = 19.10497317454280017916...
		

Crossrefs

Cf. A002163 (decimal expansion of sqrt(5)), A010525 (decimal expansion of sqrt(73)), A176979 (decimal expansion of (15+sqrt(365))/10), A040345.
Previous Showing 81-90 of 165 results. Next