cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 167 results. Next

A261332 Expansion of Product_{k>=1} (1+x^k)^(A002203(k)).

Original entry on oeis.org

1, 2, 7, 26, 83, 278, 894, 2848, 8947, 27844, 85774, 262090, 794802, 2393874, 7165622, 21327412, 63146545, 186063052, 545783103, 1594268778, 4638773567, 13447773510, 38850645513, 111874844146, 321166890522, 919314145044, 2624198013317, 7471158542418
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; cPell[0]=2; cPell[1]=2; cPell[n_]:=cPell[n] = 2*cPell[n-1] + cPell[n-2]; CoefficientList[Series[Product[(1+x^k)^cPell[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (1+sqrt(2))^n * exp(-1 + 2^(-3/2) + 2*sqrt(n) + s) / (2 * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} = 2*(-1)^(k+1)/(((1+sqrt(2))^k + 2/(1 + (1+sqrt(2))^k) - 3)*k) = -0.2731939535370496116124191192900280854879921353977...

A166879 G.f.: A(x) = exp( Sum_{n>=1} A002203(n^2)/2*x^n/n ).

Original entry on oeis.org

1, 1, 9, 473, 166969, 371186249, 5020831641761, 407273265807001089, 196573413317730320842177, 561769503571822735164882969633, 9474113076734769687535254457293566857, 940665572280219007549184269220597591870817337
Offset: 0

Views

Author

Paul D. Hanna, Oct 22 2009

Keywords

Comments

A002203 equals the logarithmic derivative of the Pell numbers (A000129).
Note that A002203(n^2) = (1+sqrt(2))^(n^2) + (1-sqrt(2))^(n^2).

Examples

			G.f.: A(x) = 1 + x + 9*x^2 + 473*x^3 + 166969*x^4 + 371186249*x^5 +...
log(A(x)) = x + 17*x^2/2 + 1393*x^3/3 + 665857*x^4/4 + 1855077841*x^5/5 + 30122754096401*x^6/6 + 2850877693509864481*x^7/7 +...+ A002203(n^2)/2*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,polcoeff((1-x)/(1-2*x-x^2+x*O(x^(m^2))),m^2)*x^m/m)+x*O(x^n)),n))}
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,polcoeff((1-x)/(1-2*x-x^2+x*O(x^(k^2))),k^2)*a(n-k)))}

Formula

a(n) == 1 (mod 8).
a(n) = (1/n)*Sum_{k=1..n} A002203(k^2)/2*a(n-k) for n>0 with a(0)=1.
Self-convolution yields A165937.

A204383 G.f.: Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^3 where A002203(n) is the companion Pell numbers.

Original entry on oeis.org

1, -6, -9, 70, 90, 0, -1411, -1722, 0, 490, 60534, 75222, 49, -21510, 0, -6067754, -7542180, 0, 2156110, 0, 81, 1420032740, 1764323886, 0, -504516870, -8118, 0, -50196874, -783087782910, -973096740630, -121, 278263575996, 0, 0, 27685627830, 0, 1024173639305948
Offset: 0

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

a(A020757(n)) = 0 where A020757 lists numbers that are not the sum of two triangular numbers.

Examples

			G.f.: A(x) = 1 - 6*x - 9*x^2 + 70*x^3 + 90*x^4 - 1411*x^6 - 1722*x^7 +...
-log(A(x))/3 = 1*2*x + 3*6*x^2/2 + 4*14*x^3/3 + 7*34*x^4/4 + 6*82*x^5/5 + 12*198*x^6/6 +...+ sigma(n)*A002203(n)*x^n/n +...
The g.f. equals the product:
A(x) = (1-2*x-x^2)^3 * (1-6*x^2+x^4)^3 * (1-14*x^3-x^6)^3 * (1-34*x^4+x^8)^3 * (1-82*x^5-x^10)^3 * (1-198*x^6+x^12)^3 *...* (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^3 *...
Positions of zeros form A020757:
[5,8,14,17,19,23,26,32,33,35,40,41,44,47,50,52,53,54,59,62,63,...].
		

Crossrefs

Programs

  • PARI
    /* Subroutine used in PARI programs below: */
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, -3*sigma(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(prod(m=1, n, 1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^3, n)}

Formula

G.f.: exp( Sum_{n>=1} -3 * sigma(n) * A002203(n) * x^n/n ).

A383742 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of g.f. x/(1 - A002203(k)*x + (-1)^k*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 6, 5, 4, 0, 1, 14, 35, 12, 5, 0, 1, 34, 197, 204, 29, 6, 0, 1, 82, 1155, 2772, 1189, 70, 7, 0, 1, 198, 6725, 39236, 39005, 6930, 169, 8, 0, 1, 478, 39203, 551532, 1332869, 548842, 40391, 408, 9, 0, 1, 1154, 228485, 7761996, 45232349, 45278310, 7722793, 235416, 985, 10
Offset: 0

Views

Author

Seiichi Manyama, May 07 2025

Keywords

Examples

			Square array begins:
  0,  0,    0,     0,       0,        0, ...
  1,  1,    1,     1,       1,        1, ...
  2,  2,    6,    14,      34,       82, ...
  3,  5,   35,   197,    1155,     6725, ...
  4, 12,  204,  2772,   39236,   551532, ...
  5, 29, 1189, 39005, 1332869, 45232349, ...
		

Crossrefs

Columns k=0..6 give A001477, A000129, A001109, A041085(n-1), A091761, A292423, A097731(n-1).
Rows n=0..5 give A000004, A000012, A002203, A383720, A383740, A383741.
Main diagonal gives A380083.
Cf. A028412.

Programs

  • Mathematica
    A[n_, k_] := Fibonacci[k*n, 2]/Fibonacci[k, 2]; A[n_, 0] := n; Table[A[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 08 2025 *)
  • PARI
    pell(n) = ([2, 1; 1, 0]^n)[2, 1];
    a(n, k) = if(k==0, n, pell(k*n)/pell(k));

Formula

A(0,k) = 0, A(1,k) = 1; A(n,k) = A002203(k) * A(n-1,k) - (-1)^k * A(n-2,k) for n > 1.
A(n,k) = Pell(k*n)/Pell(k) for k > 0.

A206141 G.f.: Sum_{n>=0} x^n/Product_{k=1..n} (1 - A002203(k)*x^k + (-1)^k*x^(2*k)), where A002203 is the companion Pell numbers.

Original entry on oeis.org

1, 1, 3, 8, 26, 67, 216, 555, 1704, 4538, 13320, 35376, 103863, 273792, 783694, 2101835, 5905044, 15745360, 44132278, 117267422, 325136638, 868034994, 2379074541, 6337238658, 17347580484, 46039358056, 125056019725, 332678989816, 898361151760, 2382959919616
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare to the g.f. of partitions: Sum_{n>=0} x^n/Product_{k=1..n} (1-x^k).
As an analog to the identity: (1-x^n) = Product_{k=0..n-1} (1 - u^k*x), where u=exp(2*Pi*I/n), we have (1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Product_{k=0..n-1} (1 - 2*u^k*x - (u^k*x)^2).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 26*x^4 + 67*x^5 + 216*x^6 + 555*x^7 +...
where
A(x) = 1 + x/(1-2*x-x^2) + x^2/((1-2*x-x^2)*(1-6*x^2+x^4)) + x^3/((1-2*x-x^2)*(1-6*x^2+x^4)*(1-14*x^3-x^6)) + x^4/((1-2*x-x^2)*(1-6*x^2+x^4)*(1-14*x^3-x^6)*(1-34*x^4+x^8)) + x^5/((1-2*x-x^2)*(1-6*x^2+x^4)*(1-14*x^3-x^6)*(1-34*x^4+x^8)*(1-82*x^5-x^10)) +...
The companion Pell numbers begin:
A002203 = [2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ...].
		

Crossrefs

Cf. A002203 (Co.Pell), A206141.

Programs

  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(sum(m=0,n,x^m/prod(k=1,m,1-A002203(k)*x^k+(-1)^k*x^(2*k)+x*O(x^n))),n)}
    for(n=0,51,print1(a(n),", "))

A335668 Even composites m such that A002203(m) == 2 (mod m).

Original entry on oeis.org

4, 8, 16, 24, 32, 48, 64, 72, 96, 120, 128, 144, 168, 192, 216, 240, 256, 264, 272, 288, 336, 360, 384, 432, 480, 504, 512, 528, 544, 576, 600, 648, 672, 720, 768, 792, 816, 840, 864, 960, 1008, 1024, 1056, 1080, 1088, 1152, 1176, 1200, 1296, 1320, 1344, 1440, 1512
Offset: 1

Views

Author

Ovidiu Bagdasar, Jun 17 2020

Keywords

Comments

If p is a prime, then A002203(p)==2 (mod p).
Even composites for which the congruence holds.
Even composites m for which the sum of the Pell numbers A000129(0) + ... + A000129(m-1) is divisible by m.

Examples

			4 is the first composite number m for which A002203(m)==2 (mod m) since A002203(4)=34==2 (mod 4), so a(1)=4.
The next even composite for which the congruence holds is m = 8 since A002203(8)=1154==2 (mod 8), so a(2)=8.
		

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A270342 (all positive integers), A270345 (all composites), A330276 (odd composites),

Programs

  • Mathematica
    Select[Range[4, 2000, 2], Divisible[LucasL[#, 2] - 2, #] &] (* Amiram Eldar, Jun 18 2020 *)

A085293 Product of Lucas (A000204) and a Pell Companion series (A002203).

Original entry on oeis.org

2, 18, 56, 238, 902, 3564, 13862, 54238, 211736, 827298, 3231362, 12623044, 49308482, 192613698, 752401496, 2939092798, 11480914982, 44847668844, 175187526662, 684331472398, 2673190054136, 10442227799538, 40790261396162, 159338166024964, 622419427368002
Offset: 1

Views

Author

Gary W. Adamson, Jun 24 2003

Keywords

Comments

Convergent a(n+1)/a(n) = ((1+sqrt(5))/2)*(1+sqrt(2)) = (1.618...)*(2.414213...) = 3.9062796... = (1 + sqrt(2) + sqrt(5) + sqrt(10))/2.

Crossrefs

Programs

  • Magma
    I:=[2,18,56,238]; [n le 4 select I[n] else 2*Self(n-1) + 7*Self(n-2) + 2*Self(n-3) - Self(n-4):n in [1..30]]; // Marius A. Burtea, Aug 25 2019

Formula

a(n) = A000204(n) * A002203(n), n > 0.
a(n) = 2*A085292(n).
a(n) = (((1+sqrt(5))/2)^n + ((1-sqrt(5))/2)^n) * ((1+sqrt(2))^n + (1-sqrt(2))^n).
From Colin Barker, Oct 15 2013: (Start)
a(n) = 2*a(n-1) + 7*a(n-2) + 2*a(n-3) - a(n-4).
G.f.: -2*x*(2*x^3 - 3*x^2 - 7*x - 1) / (x^4 - 2*x^3 - 7*x^2 - 2*x + 1). (End)
E.g.f.: 4*(exp(x/2)*(cosh(x/sqrt(2))*cosh(sqrt(5/2)*x)*cosh(sqrt(5)*x/2)+sinh(x/sqrt(2))*sinh(sqrt(5/2)*x)*sinh(sqrt(5)*x/2))-1). - Stefano Spezia, Aug 25 2019

Extensions

More terms from David Wasserman, Jan 31 2005
More terms from Colin Barker, Oct 16 2013

A203534 G.f.: exp( Sum_{n>=1} sigma(n)*A002203(n)*x^n/n ) where A002203 is the companion Pell numbers.

Original entry on oeis.org

1, 2, 11, 38, 156, 516, 1991, 6434, 23065, 75132, 255335, 816480, 2724245, 8570794, 27763807, 87057596, 276339126, 855374534, 2681503010, 8218321006, 25421912010, 77383062314, 236519199902, 714226056554, 2165295121179, 6490447624984, 19503550719297, 58127246438024
Offset: 0

Views

Author

Paul D. Hanna, Jan 02 2012

Keywords

Comments

Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), and to the g.f. of Pell numbers: exp( Sum_{n>=1} A002203(n)*x^n/n ).

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 38*x^3 + 156*x^4 + 516*x^5 + 1991*x^6 +...
where
A(x) = 1/((1-2*x-x^2) * (1-6*x^2+x^4) * (1-14*x^3-x^6) * (1-34*x^4+x^8) * (1-82*x^5-x^10) * (1-198*x^6+x^12) *...* (1 - A002203(n)*x^n + (-1)^n*x^(2*n)) *...).
The companion Pell numbers (starting at offset 1) begin:
A002203 = [2,6,14,34,82,198,478,1154,2786,6726,16238,...].
		

Crossrefs

Cf. A156234, A000129 (Pell), A002203 (companion Pell), A000203 (sigma).

Programs

  • PARI
    /* Subroutine used in PARI programs below: */
    {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, sigma(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(prod(m=1, n, 1/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
    
  • PARI
    {a(n)=if(n<0,0,if(n==0,1,(1/n)*sum(k=1,n,sigma(k)*A002203(k)*a(n-k))))}

Formula

G.f.: Product_{n>=1} 1/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)).
a(n) = (1/n)*Sum_{k=1..n} sigma(k)*A002203(k)*a(n-k) for n>0, with a(0) = 1.

A204385 G.f.: Sum_{n>=1} moebius(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203 is the companion Pell numbers.

Original entry on oeis.org

1, 1, 4, 6, 28, 22, 168, 204, 788, 1108, 5740, 4356, 33460, 39914, 149296, 235416, 1136688, 862466, 6625108, 7452408, 30662688, 46594942, 225058680, 170763912, 1266505772, 1583313340, 6116296036, 9119790204, 44560482148, 30146578648, 259717522848, 313506783024
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the identity: x = Sum_{n>=1} moebius(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)).

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 6*x^4 + 28*x^5 + 22*x^6 + 168*x^7 + 204*x^8 +...
where A(x) = x/(1-2*x-x^2) - x^2/(1-6*x^2+x^4) - x^3/(1-14*x^3-x^6) - x^5/(1-82*x^5-x^10) + x^6/(1-198*x^6+x^12) +...+ moebius(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    {a(n)=polcoeff(sum(m=1,n,moebius(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

a(2^n) = A001109(2^(n-1)) for n>=1, where the g.f. of A001109 is x/(1-6*x+x^2).

A212443 a(n) = (1/n) * Sum_{d|n} moebius(n/d) * A002203(d)^2, where A002203 is the companion Pell numbers.

Original entry on oeis.org

4, 16, 64, 280, 1344, 6496, 32640, 166320, 862400, 4523232, 23970240, 128063040, 689008320, 3728973120, 20285199872, 110841302880, 608029121280, 3346972244000, 18480871268160, 102328688556864, 568014587806720, 3160148362953120, 17617881702072960
Offset: 1

Views

Author

Paul D. Hanna, May 17 2012

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * LucasL[#, 2]^2 &] / n; Array[a, 25] (* Amiram Eldar, Aug 22 2023 *)
  • PARI
    {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*A002203(d)^2)/n)}
    for(n=1,30,print1(a(n),","))

Formula

G.f.: 1/Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} A002203(n)^3 * x^n/n), which equals the g.f. of A212442.
Previous Showing 11-20 of 167 results. Next