cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A212311 Numbers n such that 3^8*2^n - 1 is prime.

Original entry on oeis.org

1, 15, 33, 43, 61, 121, 295, 315, 367, 681, 771, 789, 1485, 4915, 5305, 33649, 81343, 85005, 116307, 154869, 230731, 279591, 287847, 329515, 545353, 1053481
Offset: 1

Views

Author

Lei Zhou, Oct 24 2013

Keywords

Comments

Riesel Primes with k = 3^8 = 6561.
Checked up to n = 1053627.

Examples

			6561*2^1-1=13121 is a prime number.
		

Crossrefs

Programs

  • Mathematica
    b=2^8;i=0; Table[While[i++; cp=b*2^i-1; !PrimeQ[cp]]; i, {j, 1, 13}]
  • PARI
    is(n)=ispseudoprime(3^8*2^n-1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Lei Zhou, Nov 08 2013, added a Mathematica program for small elements.

A238749 Exponents of third Mersenne prime pair: numbers n such that 2^n - 5 and 5*2^n - 1 are both prime.

Original entry on oeis.org

4, 8, 10, 12, 18, 32
Offset: 1

Views

Author

Keywords

Comments

a(7) > 350028.
Intersection of A059608 and A001770.
Exponents of Mersenne prime pairs {2^n - (2k + 1), (2k + 1)*2^n - 1}:
for k = 0: 2, 3, 5, 7, 13, 17, ... Intersection of A000043 and A000043
for k = 1: 3, 4, 6, 94, ... Intersection of A050414 and A002235
for k = 2: 4, 8, 10, 12, 18, 32, ... Intersection of A059608 and A001770
for k = 3: Intersection of A059609 and A001771
for k = 4: 21, ... Intersection of A059610 and A002236
for k = 5: Intersection of A096817 and A001772
for k = 6: Intersection of A096818 and A001773
for k = 7: 5, 10, 14, ... Intersection of A059612 and A002237
for k = 8: 6, 16, 20, 36, ... Intersection of A059611 and A001774
for k = 9: 5, 21, ... Intersection of A096819 and A001775
for k = 10: 7, 13, ... Intersection of A096820 and A002238
for k = 11: 6, 8, 12, ...
for k = 12: 9, ...
for k = 13: 5, 8, 10, ...
for k = 14:

Examples

			a(1) = 4 because 2^4 - 5 = 11 and 5*2^4 - 1 = 79 are both primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100] | IsPrime(2^n-5) and IsPrime(5*2^n-1)]; // Vincenzo Librandi, May 17 2015
  • Mathematica
    fQ[n_] := PrimeQ[2^n - 5] && PrimeQ[5*2^n - 1]; k = 1; While[ k < 15001, If[fQ@ k, Print@ k]; k++] (* Robert G. Wilson v, Mar 05 2014 *)
    Select[Range[1000], PrimeQ[2^# - 5] && PrimeQ[5 2^# - 1] &] (* Vincenzo Librandi, May 17 2015 *)
  • PARI
    isok(n) = isprime(2^n - 5) && isprime(5*2^n - 1); \\ Michel Marcus, Mar 04 2014
    

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A175171 Primes p such that 3*2^p-1 is also prime.

Original entry on oeis.org

2, 3, 7, 11, 43, 103, 827, 7559, 26459, 164987
Offset: 1

Views

Author

Vincenzo Librandi, Mar 09 2010

Keywords

Comments

These are the primes in A002235. [R. J. Mathar, May 02 2010]

Examples

			For p=2, 3*2^2-1=11; p=3, 3*2^3-1=23; p=7, 3*2^7-1=383
		

Crossrefs

Cf. A002235.

Programs

  • Magma
    [p: p in PrimesUpTo(7000) | IsPrime(3*2^p-1) ];

Extensions

3 more terms from R. J. Mathar, May 02 2010

A175541 A007505 in binary.

Original entry on oeis.org

10, 101, 1011, 10111, 101111, 10111111, 101111111, 1011111111111, 10111111111111111111, 101111111111111111111111111111111111, 1011111111111111111111111111111111111111
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 24 2010

Keywords

Comments

Primes of the form 10, 101, 1011, 10111,..

Examples

			a(12)=101111111111111111111111111111111111111111111.
		

Programs

  • Mathematica
    FromDigits/@Select[Table[PadRight[{1,0},n,1],{n,0,50}], PrimeQ[ FromDigits[ #,2]]&] (* Harvey P. Dale, Nov 12 2011 *)

Formula

A231374 Numbers n such that 3^9*2^n - 1 is prime.

Original entry on oeis.org

4, 7, 19, 22, 32, 46, 50, 62, 83, 103, 124, 142, 190, 230, 256, 260, 422, 596, 1084, 2270, 2770, 5366, 5434, 5762, 6826, 9239, 15211, 22556, 58790, 81319, 172510, 225350, 236326, 258592, 445364, 975020
Offset: 1

Views

Author

Lei Zhou, Nov 08 2013

Keywords

Comments

Riesel Primes with k = 3^9 = 19683.
Checked up to n = 1000000.

Examples

			19683*2^4-1=314927 is a prime number.
		

Crossrefs

Programs

  • Mathematica
    i=0;Table[While[i++;cp=19683*2^i-1;!PrimeQ[cp]];i,{j,1,20}]
  • PARI
    is(n)=ispseudoprime(3^9*2^n-1) \\ Charles R Greathouse IV, Jun 13 2017

A267943 Numbers n such that 2^n - 3 and 3*2^n - 1 are both prime.

Original entry on oeis.org

3, 4, 6, 94
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 22 2016

Keywords

Comments

The intersection of A002235 and A050414 is not empty (3 does not belong to A267985).

Examples

			a(3) = 6 because 2^6 - 3 = 61 and 3*2^6 - 1 = 191 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..94] | IsPrime(2^n-3) and IsPrime(3*2^n-1)];
    
  • PARI
    isok(n) = isprime(2^n-3) && isprime(3*2^n-1);

Formula

A002235 INTERSECT A050414.

A275247 a(n) = number of decimal digits of A007505(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 3, 4, 6, 11, 12, 14, 18, 20, 24, 29, 32, 44, 63, 66, 93, 99, 119, 139, 142, 250, 384, 987, 1267, 1546, 2276, 3817, 4486, 5457, 5666, 7734, 7966, 12532, 15470, 21610, 24183, 25795, 26543, 29220, 37217, 46941, 49667, 70671, 124880, 176102, 211335, 219060, 298833, 361552, 370947, 696203, 944108, 1274988, 1833429, 3457035, 3531640, 3580969
Offset: 1

Views

Author

Zak Seidov, Jul 21 2016

Keywords

Crossrefs

Cf. A055642, A007505 (primes of form 3*2^n-1), A002235 (numbers n such that 3*2^n-1 is prime).

Formula

a(n) = A055642(A007505(n)). - Michel Marcus, Jul 23 2016
Previous Showing 31-38 of 38 results.