cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 240 results. Next

A079216 Square array A(n>=0,k>=1) (listed antidiagonally: A(0,1)=1, A(1,1)=1, A(0,2)=1, A(2,1)=2, A(1,2)=1, A(0,3)=1, A(3,1)=3, ...) giving the number of n-edge general plane trees fixed by k-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 5, 2, 1, 1, 6, 11, 3, 2, 1, 1, 10, 26, 8, 5, 2, 1, 1, 11, 66, 18, 11, 3, 2, 1, 1, 18, 161, 43, 30, 5, 5, 2, 1, 1, 21, 420, 104, 82, 6, 14, 3, 2, 1, 1, 34, 1093, 273, 233, 15, 38, 5, 5, 2, 1, 1, 35, 2916, 702, 680, 36, 111, 6, 11, 3, 2, 1, 1, 68, 7819, 1870
Offset: 0

Views

Author

Antti Karttunen Jan 03 2002

Keywords

Comments

Note: the counts given here are inclusive, e.g. A(n,6) includes the counts A(n,3) and A(n,2) which in turn both include A(n,1).

Crossrefs

A(n, A003418(n)) = A000108(n). The first row: A057546, second: A079223, third: A079224, fourth: A079225, fifth: A079226, sixth: A079227. Cf. also A079217-A079222.

Programs

  • Maple
    with(combinat, composition); # composition(n,k) gives ordered partitions of integer n into k parts.
    [seq(A079216(n),n=0..119)]; A079216 := n -> A079216bi(A025581(n), A002262(n)+1);
    A079216bi := proc(n,k) option remember; local r; if(0 = n) then RETURN(1); else RETURN(add(PFixedByA057511(n,k,r),r=1..n)); fi; end;
    PFixedByA057511 := proc(n,k,r) option remember; local ncycles, cyclen, i, c; ncycles := igcd(r,k); cyclen := r/ncycles; if(0 <> (n mod cyclen)) then RETURN(0); else add(mul(A079216bi(i-1,ilcm(r,k)),i=c),c=composition(n/cyclen,ncycles)); fi; end;

Formula

A(0, k) = 1. A(n, k) = Sum_{r=1..n where r/gcd(r, k) divides n} Sum_{c as each composition of n/(r/gcd(r, k)) into gcd(r, k) parts} Product_{i as each composant of c} A(i-1, lcm(r, k))

A163529 The Y-coordinate of the n-th point in the Peano curve A163334.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Antti Karttunen, Aug 01 2009

Keywords

Comments

There is a 2-state automaton that accepts exactly those pairs (n,a(n)) where n is represented in base 9 and a(n) in base 3; see accompanying file a163529.pdf. - Jeffrey Shallit, Aug 10 2023

Crossrefs

Formula

a(n) = A002262(A163335(n)) = A025581(A163337(n)) = A163326(A163332(n)).

Extensions

Name corrected by Kevin Ryde, Aug 28 2020

A225640 Array A(n,k) of iterated Landau-like functions, where on the row n=0 A(0,0)=1 and A(0,k>=1)=k, and the successive rows A(n,k) give a maximum value lcm(p1,p2,...,pj,A(n-1,k)) for all partitions {p1+p2+...+pj} of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 6, 2, 1, 1, 5, 12, 6, 2, 1, 1, 6, 30, 12, 6, 2, 1, 1, 7, 30, 60, 12, 6, 2, 1, 1, 8, 84, 60, 60, 12, 6, 2, 1, 1, 9, 120, 420, 60, 60, 12, 6, 2, 1, 1, 10, 180, 840, 420, 60, 60, 12, 6, 2, 1, 1, 11, 210, 1260, 840, 420, 60, 60, 12, 6, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 14 2013

Keywords

Comments

In this array the maximization of LCM starts from partition {k} of k, instead of partition {1+1+...+1} as in A225630.

Examples

			The top-left corner of the array:
1, 1, 2, 3,  4,  5,  6,   7,   8,   9,    10,    11,    12, ...
1, 1, 2, 6, 12, 30, 30,  84, 120,  180,  210,   330,   420, ...
1, 1, 2, 6, 12, 60, 60, 420, 840, 1260,  840,  4620,  4620, ...
1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 13860, 13860, ...
1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, ...
...
		

Crossrefs

Transpose: A225641.
Cf. A225642, A225644, A001477 (row 0), A225646 (row 1).
Rows converge towards A003418 (main diagonal of this array).
See A225630 for a variant employing a similar process, but which uses 1 in column n as the initial seed for that column, instead of n.

Programs

  • Scheme
    (define (A225640 n) (A225640bi (A025581 n) (A002262 n)))
    (define (A225640bi col row) (let ((maxlcm (list 0))) (let loop ((prevmaxlcm (max 1 col)) (stepsleft row)) (if (zero? stepsleft) prevmaxlcm (begin (gen_partitions col (lambda (p) (set-car! maxlcm (max (car maxlcm) (apply lcm (cons prevmaxlcm p)))))) (loop (car maxlcm) (- stepsleft 1)))))))
    (define (gen_partitions m colfun) (let recurse ((m m) (b m) (n 0) (partition (list))) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (cons i partition)) (if (< i (min b m)) (loop (+ 1 i))))))))

A255483 Infinite square array read by antidiagonals downwards: T(0,m) = prime(m), m >= 1; for n >= 1, T(n,m) = T(n-1,m)*T(n-1,m+1)/gcd(T(n-1,m), T(n-1,m+1))^2, m >= 1.

Original entry on oeis.org

2, 3, 6, 5, 15, 10, 7, 35, 21, 210, 11, 77, 55, 1155, 22, 13, 143, 91, 5005, 39, 858, 17, 221, 187, 17017, 85, 3315, 1870, 19, 323, 247, 46189, 133, 11305, 5187, 9699690, 23, 437, 391, 96577, 253, 33649, 21505, 111546435, 46
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2015

Keywords

Comments

The first column of the array is given by A123098; subsequent columns are obtained by applying the function A003961, i.e., replacing each prime factor by the next larger prime. - M. F. Hasler, Sep 17 2016
Interpretation with respect to A329329 from Peter Munn, Feb 08 2020: (Start)
With respect to the ring defined by A329329 and A059897, the first row gives powers of 3, the first column gives powers of 6, both in order of increasing exponent, and the body of the table gives their products. A329049 is the equivalent table in which the first column gives powers of 4.
A099884 is the equivalent table for the ring defined by A048720 and A003987. That ring is an image of the polynomial ring GF(2)[x] using a standard representation of the polynomials as integers. A329329 describes a comparable mapping to integers from the related polynomial ring GF(2)[x,y].
Using these mappings, the tables here and in A099884 are matching images: the first row represents powers of x, the first column represents powers of (x+1) and the body of the table gives their products.
Hugo van der Sanden's formula (see formula section) indicates that A019565 provides a mapping from A099884. In the wider terms described above, A019565 is an injective homomorphism between images of the 2 polynomial rings, and maps the image of each GF(2)[x] polynomial to the image of the equivalent GF(2)[x,y] polynomial.
(End)

Examples

			The top left corner of the array, row index 0..5, column index 1..10:
    2,    3,     5,     7,    11,     13,     17,     19,      23,      29
    6,   15,    35,    77,   143,    221,    323,    437,     667,     899
   10,   21,    55,    91,   187,    247,    391,    551,     713,    1073
  210, 1155,  5005, 17017, 46189,  96577, 215441, 392863,  765049, 1363783
   22,   39,    85,   133,   253,    377,    527,    703,     943,    1247
  858, 3315, 11305, 33649, 95381, 198679, 370481, 662929, 1175921, 1816879
		

Crossrefs

First two columns = A123098, A276804.
A kind of generalization of A036262.
Transpose: A276578, terms sorted into ascending order: A276579.
A003987, A048720, A059897, A329049 relate to the A329329 polynomial ring interpretation.

Programs

  • Maple
    T:= proc(n, m) option remember; `if`(n=0, ithprime(m),
          T(n-1, m)*T(n-1, m+1)/igcd(T(n-1, m), T(n-1, m+1))^2)
        end:
    seq(seq(T(n, 1+d-n), n=0..d), d=0..10);  # Alois P. Heinz, Feb 28 2015
  • Mathematica
    T[n_, m_] := T[n, m] = If[n == 0, Prime[m], T[n-1, m]*T[n-1, m+1]/GCD[T[n-1, m], T[n-1, m+1]]^2]; Table[Table[T[n, 1+d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
  • PARI
    T=matrix(N=15,N);for(j=1,N,T[1,j]=prime(j));(f(x,y)=x*y/gcd(x,y)^2);for(k=1,N-1,for(j=1,N-k,T[k+1,j]=f(T[k,j],T[k,j+1])));A255483=concat(vector(N,i,vector(i,j,T[j,1+i-j]))) \\ M. F. Hasler, Sep 17 2016
    
  • PARI
    A255483(n,k)=prod(j=0,n,if(bitand(n-j,j),1,prime(j+k))) \\ M. F. Hasler, Sep 18 2016
    
  • Scheme
    (define (A255483 n) (A255483bi (A002262 n) (+ 1 (A025581 n))))
    ;; Then use either an almost standalone version (requiring only A000040):
    (define (A255483bi row col) (if (zero? row) (A000040 col) (let ((a (A255483bi (- row 1) col)) (b (A255483bi (- row 1) (+ col 1)))) (/ (lcm a b) (gcd a b)))))
    ;; Or one based on M. F. Hasler's new recurrence:
    (define (A255483bi row col) (if (= 1 col) (A123098 row) (A003961 (A255483bi row (- col 1)))))
    ;; Antti Karttunen, Sep 18 2016

Formula

T(n,1) = A123098(n), T(n,m+1) = A003961(T(n,m)), for all n >= 0, m >= 1. - M. F. Hasler, Sep 17 2016
T(n,m) = Prod_{k=0..n} prime(k+m)^(!(n-k & k)) where !x is 1 if x=0 and 0 else, and & is binary AND. - M. F. Hasler, Sep 18 2016
From Antti Karttunen, Sep 18 2016: (Start)
For n >= 1, m >= 1, T(n,m) = lcm(T(n-1,m),T(n-1,m+1)) / gcd(T(n-1,m),T(n-1,m+1)).
T(n,k) = A007913(A066117(n+1,k)).
T(n,k) = A019565(A099884(n,k-1)) [After Hugo van der Sanden's observations on SeqFan-list].
(End)
From Peter Munn, Jan 08 2020: (Start)
T(0,1) = 2, and for n >= 0, k >= 1, T(n+1,k) = A329329(T(n,k), 6), T(n,k+1) = A329329(T(n,k), 3).
T(n,k) = A329329(T(n,1), T(0,k)).
(End)

A053615 Pyramidal sequence: distance to nearest product of two consecutive integers (promic or heteromecic numbers).

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7
Offset: 0

Views

Author

Henry Bottomley, Mar 20 2000

Keywords

Comments

a(A002378(n)) = 0; a(n^2) = n.
Table A049581 T(n,k) = |n-k| read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). - Boris Putievskiy, Jan 29 2013

Examples

			a(10) = |10 - 3*4| = 2.
From _Boris Putievskiy_, Jan 29 2013: (Start)
The start of the sequence as table:
  0, 1, 2, 3, 4, 5, 6, 7, ...
  1, 0, 1, 2, 3, 4, 5, 6, ...
  2, 1, 0, 1, 2, 3, 4, 5, ...
  3, 2, 1, 0, 1, 2, 3, 4, ...
  4, 3, 2, 1, 0, 1, 2, 3, ...
  5, 4, 3, 2, 1, 0, 1, 2, ...
  6, 5, 4, 3, 2, 1, 0, 1, ...
  ...
The start of the sequence as triangle array read by rows:
  0;
  1, 0, 1;
  2, 1, 0, 1, 2;
  3, 2, 1, 0, 1, 2, 3;
  4, 3, 2, 1, 0, 1, 2, 3, 4;
  5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5;
  6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6;
  7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7;
  ...
Row number r contains 2*r-1 numbers: r-1, r-2, ..., 0, 1, 2, ..., r-1. (End)
		

Crossrefs

Programs

  • Maple
    A053615 := proc(n)
        A004738(n+1)-1 ; # reuses code of A004738
    end proc:
    seq(A053615(n),n=0..30) ; # R. J. Mathar, Feb 14 2019
  • Mathematica
    a[0] = 0; a[n_] := Floor[Sqrt[n]] - a[n - Floor[Sqrt[n]]]; Table[a[n], {n, 0, 103}] (* Jean-François Alcover, Dec 16 2011, after Benoit Cloitre *)
    Join[{0},Module[{nn=150,ptci},ptci=Times@@@Partition[Range[nn/2+1],2,1];Table[Abs[n-Nearest[ptci,n]],{n,nn}][[All,1]]]] (* Harvey P. Dale, Aug 29 2020 *)
  • PARI
    a(n)=sqrtint(n)-a(n-sqrtint(n))
    
  • PARI
    apply( {A053615(n)=(t=sqrt(n)\/1)-abs(t^2-n)}, [0..99]) \\ M. F. Hasler, Feb 01 2025
    
  • Python
    A053615 = lambda n: (t := round(n**.5)) - abs(t**2 - n) # M. F. Hasler, Feb 01 2025
    
  • Python
    from math import isqrt
    def A053615(n): return abs((t:=isqrt(n))*(t+1)-n) # Chai Wah Wu, Mar 01 2025

Formula

a(n) = A004738(n+1) - 1.
Let u(1)=1, u(n) = n - u(n-sqrtint(n)) (cf. A037458); then a(0)=0 and for n > 0 a(n) = 2*u(n) - n. - Benoit Cloitre, Dec 22 2002
a(0)=0 then a(n) = floor(sqrt(n)) - a(n - floor(sqrt(n))). - Benoit Cloitre, May 03 2004
a(n) = |A196199(n)|. a(n) = |n - t^2 - t|, where t = floor(sqrt(n)). - Boris Putievskiy, Jan 29 2013 [corrected by Ridouane Oudra, May 11 2019]
a(n) = A000194(n) - A053188(n) = t - |t^2 - n|, where t = floor(sqrt(n)+1/2). - Ridouane Oudra, May 11 2019

A055235 Sums of two powers of 3.

Original entry on oeis.org

2, 4, 6, 10, 12, 18, 28, 30, 36, 54, 82, 84, 90, 108, 162, 244, 246, 252, 270, 324, 486, 730, 732, 738, 756, 810, 972, 1458, 2188, 2190, 2196, 2214, 2268, 2430, 2916, 4374, 6562, 6564, 6570, 6588, 6642, 6804, 7290, 8748, 13122, 19684, 19686, 19692, 19710
Offset: 0

Views

Author

Henry Bottomley, Jun 22 2000

Keywords

Crossrefs

Partial sums of A135293.

Programs

  • Mathematica
    mx = 10; Sort[Flatten[Table[3^x + 3^y, {y, 0, mx}, {x, 0, y}]]] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
    f[n_] := Block[{t = Floor[(Sqrt[1 + 8 (n - 1)] - 1)/2]}, 3^(n - 1 - t*(t + 1)/2) + 3^t]; Array[f, 49] (* Robert G. Wilson v, Oct 08 2011 *)
    Total/@Tuples[3^Range[0,10],2]//Union (* Harvey P. Dale, Aug 28 2025 *)
  • PARI
    for( n=0,5, for(k=0,n, print1(3^n+3^k",")))
    
  • PARI
    A055235(n)={ my( t=(sqrtint(8*n-7)-1)\2); 3^t+3^(n-1-t*(t+1)/2) }  \\ M. F. Hasler, Oct 08 2011
    
  • Python
    from math import isqrt
    def A055235(n): return 3**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+3**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 08 2025

Formula

a(n+1) = 3^(n-trinv(n)*(trinv(n)+1)/2)+3^trinv(n), where trinv(n) = floor((sqrt(1+8*n)-1)/2) = A003056(n) and n-trinv(n)*(trinv(n)+1)/2 = A002262(n). [corrected by M. F. Hasler, Oct 08 2011]
Regarded as a triangle, T(n, k) = 3^n + 3^k, because 3^n + 3^n < 3^(n+1) + 3^0 for all n > 0.

A057945 Number of triangular numbers needed to represent n with greedy algorithm.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 1, 2, 3, 2, 1, 2, 3, 2, 3, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 2, 1, 2, 3, 2, 3, 4, 2, 3, 1, 2, 3, 2, 3, 4, 2, 3, 4, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 4, 3
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2000

Keywords

Comments

a(n) = sum of digits of A000462(n). - Reinhard Zumkeller, Mar 27 2011
The length of (number of moves in) Simon Norton's game in A006019 starting with an initial heap of n if both players always take, never put. - R. J. Mathar, May 13 2016

Examples

			a(35)=3 since 35=28+6+1
		

Crossrefs

Cf. A000217, A002262, A056944, A057944. See A006893 for records.

Programs

  • Haskell
    a057945 n = g n $ reverse $ takeWhile (<= n) $ tail a000217_list where
       g 0 _      = 0
       g x (t:ts) = g r ts + a where (a,r) = divMod x t
    -- Reinhard Zumkeller, Mar 27 2011
  • Maple
    A057945 := proc(n)
        local a,x;
        a := 0 ;
        x := n ;
        while x > 0 do
            x := x-A057944(x) ;
            a := a+1 ;
        end do:
        a ;
    end proc: # R. J. Mathar, May 13 2016
  • Mathematica
    A057944[n_] := With[{k = Floor[Sqrt[8n+1]]}, Floor[(k-1)/2]* Floor[(k+1)/2]/2];
    a[n_] := Module[{k = 0, x = n}, While[x>0, x = x - A057944[x]; k++]; k];
    Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Mar 10 2019, after R. J. Mathar *)

Formula

a(0)=0, otherwise a(n)=a(A002262(n))+1.

A085201 Array A(x,y): Position of the concatenation of binary strings A014486(x) & A014486(y) in A014486, listed antidiagonalwise as A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), ...

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 9, 5, 4, 5, 9, 14, 10, 9, 5, 6, 11, 23, 15, 23, 10, 6, 7, 14, 28, 24, 37, 24, 11, 7, 8, 16, 37, 29, 65, 38, 25, 12, 8, 9, 19, 42, 38, 79, 66, 39, 26, 13, 9, 10, 23, 51, 43, 107, 80, 67, 40, 27, 23, 10, 11, 25, 65, 52, 121, 108, 81, 68, 41, 65, 24, 11
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2003

Keywords

Comments

This table is induced by the 2-ary form of the list-function 'append' present in the programming languages like Lisp, Scheme and Prolog.

Crossrefs

Transpose: A085202. Variant: A085203. Row 1: A085223, Column 1: A072795.

Formula

a(0, y)=y, a(x, y) = A072764bi(A072771(x), a(A072772(x), y))
a(x, y) = A080300(A085207bi(A014486(x), A014486(y))) = A085200(A085215bi(A071155(y), A071155(x)))

A085203 Array A(x,y): Position of the totally balanced binary string obtained by concatenating the binary strings A014486(x) & A014486(y) in such a way that the latter is inserted after the least significant 1-bit of the former, followed by the remaining 0-bits, if any. Listed antidiagonalwise as A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), ...

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 5, 7, 3, 4, 8, 12, 8, 4, 5, 10, 21, 13, 17, 5, 6, 13, 26, 22, 31, 18, 6, 7, 15, 35, 27, 58, 32, 20, 7, 8, 18, 40, 36, 73, 59, 34, 21, 8, 9, 22, 49, 41, 100, 74, 62, 35, 22, 9, 10, 24, 63, 50, 115, 101, 76, 63, 36, 45, 10, 11, 27, 68, 64, 142, 116, 104, 77, 64, 87, 46
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2003

Keywords

Comments

This table is induced by the list-function 'app-to-xrt' whose Scheme-definition is given below, in the same way as A085201 is induced by the ordinary 'append'-function.

Crossrefs

Transpose: A085204. Variant: A085201. Row 1: A085225, Column 1: A057548.

Formula

a(0, y) = y, a(x, y) = A057548(a(A072771(x), y)) if A072772(x)=0, otherwise A072764bi(A072771(x), a(A072772(x), y)).
a(x, y) = A080300(A085211bi(A014486(x), A014486(y))) = A085200(A085219bi(A071155(y), A071155(x))).

A263255 Square array A(r,c), where each row r lists all numbers that are r edges distant from the infinite trunk (A259934) of the tree defined by edge-relation A049820(child) = parent.

Original entry on oeis.org

0, 2, 1, 6, 9, 3, 12, 10, 4, 5, 18, 25, 11, 8, 7, 22, 26, 14, 13, 17, 19, 30, 28, 32, 15, 24, 21, 23, 34, 38, 44, 16, 72, 84, 93, 27, 42, 49, 48, 20, 87, 89, 95, 97, 29, 46, 52, 81, 40, 98, 91, 96, 99, 36, 31, 54, 66, 86, 50, 139, 143, 100, 104, 101, 33, 35, 58, 68, 88, 56, 141, 145, 149, 108, 105, 103, 109, 37
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2015

Keywords

Comments

The array A(row>=0,col>=1) is read by downwards antidiagonals: A(0,1), A(0,2), A(1,1), A(0,3), A(1,2), A(2,1), A(0,4), A(1,3), A(2,2), A(3,1), etc.

Examples

			Top left corner of the array:
   0,   2,   6,  12,  18,  22,  30,  34,  42,  46,  54,  58,  62,  70
   1,   9,  10,  25,  26,  28,  38,  49,  52,  66,  68,  74,  76,  80
   3,   4,  11,  14,  32,  44,  48,  81,  86,  88, 116, 130, 135, 175
   5,   8,  13,  15,  16,  20,  40,  50,  56,  60,  83,  85,  92, 134
   7,  17,  24,  72,  87,  98, 139, 141, 142, 150, 202, 208, 225, 228
  19,  21,  84,  89,  91, 143, 145, 146, 147, 148, 206, 220, 227, 301
  23,  93,  95,  96, 100, 149, 153, 154, 160, 212, 229, 240, 305, 356
  27,  97,  99, 104, 108, 151, 158, 224, 248, 307, 309, 379, 381, 385
  29,  36, 101, 105, 120, 155, 164, 232, 260, 264, 311, 324, 383, 387
  31,  33, 103, 107, 128, 132, 157, 159, 276, 280, 313, 389, 391, 453
  35, 109, 111, 136, 140, 161, 165, 393, 395, 399, 461, 465, 532, 540
  37,  39, 113, 115, 117, 163, 167, 171, 397, 401, 403, 405, 463, 467
  41,  45, 119, 173, 407, 471, 473, 475, 568, 571, 572, 573, 575, 659
  43,  47, 123, 177, 409, 411, 477, 483, 484, 577, 578, 579, 580, 585
  51, 179, 413, 415, 479, 481, 495, 581, 583, 587, 589, 594, 671, 676
  53,  55, 181, 183, 417, 485, 591, 595, 602, 612, 673, 681, 877, 879
  57, 185, 187, 189, 419, 423, 487, 489, 593, 610, 683, 685, 693, 881
  59,  63,  64, 191, 195, 196, 421, 425, 427, 491, 493, 597, 614, 618
  61, 193, 197, 429, 435, 497, 599, 603, 622, 691, 705, 893, 895, 897
  65, 199, 201, 431, 499, 501, 601, 605, 626, 628, 695, 711, 899, 901
  ...
		

Crossrefs

Transpose: A263256.
Row 0: A259934, Row 1: A263261, Row 2: A263262, Row 3: A263263, Row 4: A263264.
Column 0: A263257.
Cf. A263254 (row index, zero-based), A263275 (row index, one-based), A263274 (column index, one-based).
Cf. also array A262898.
Previous Showing 51-60 of 240 results. Next