cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 198 results. Next

A053451 Multiplicative order of 8 mod 2n+1.

Original entry on oeis.org

1, 2, 4, 1, 2, 10, 4, 4, 8, 6, 2, 11, 20, 6, 28, 5, 10, 4, 12, 4, 20, 14, 4, 23, 7, 8, 52, 20, 6, 58, 20, 2, 4, 22, 22, 35, 3, 20, 10, 13, 18, 82, 8, 28, 11, 4, 10, 12, 16, 10, 100, 17, 4, 106, 12, 12, 28, 44, 4, 8, 110, 20, 100, 7, 14, 130, 6, 12, 68, 46, 46, 20, 28, 14, 148, 5
Offset: 0

Views

Author

Keywords

Comments

In the case n=2 and any other case where a(n)=A000010(2n+1), the multiplicative group of units modulo 2n+1 is cyclic and thus 8 (and any other unit) is a generator. These moduli are A167796, so this occurs whenever 2n+1 (caution: not n) is a member of A167796. - Kellen Myers, Feb 06 2015

Examples

			The third term a(2) is 4 because 4 is the smallest integer such that 8^4 is congruent to 1 modulo 2*2+1=5. The orbit of 8 modulo 5 is {3, 4, 2, 1}. - _Kellen Myers_, Feb 06 2015
		

Crossrefs

Programs

  • GAP
    List([0..80],n->OrderMod(8,2*n+1)); # Muniru A Asiru, Feb 26 2019
  • Magma
    [1] cat [Modorder(8, 2*n+1): n in [1..100]]; // Vincenzo Librandi, Apr 01 2014
    
  • Mathematica
    Table[MultiplicativeOrder[8, n], {n, 1, 150, 2}] (* Robert G. Wilson v, Apr 05 2011 *)
  • PARI
    vector(80, n, n--; znorder(Mod(8, 2*n+1))) \\ Michel Marcus, Feb 05 2015
    

A143663 a(n) is the least prime such that the multiplicative order of 3 mod a(n) equals n, or a(n)=1 if no such prime exists.

Original entry on oeis.org

2, 1, 13, 5, 11, 7, 1093, 41, 757, 61, 23, 73, 797161, 547, 4561, 17, 1871, 19, 1597, 1181, 368089, 67, 47, 6481, 8951, 398581, 109, 29, 59, 31, 683, 21523361, 2413941289, 103, 71, 530713, 13097927, 2851, 313, 42521761, 83, 43, 431, 5501, 181, 23535794707
Offset: 1

Views

Author

Vladimir Shevelev, Aug 28 2008

Keywords

Comments

If a(n) differs from 1, then a(n) is the minimal prime divisor of A064079(n).

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • Maple
    a:= proc(n) local f,p;
    f:= numtheory:-factorset(3^n - 1);
    for  p in f do
       if numtheory:-order(3,p) = n then return p fi
    od:
    1
    end proc:
    seq(a(n),n=1..100); # Robert Israel, Oct 13 2014
  • Mathematica
    p = 2; t = Table[0, {100}]; While[p < 100000001, a = MultiplicativeOrder[3, p]; If[0 < a < 101 && t[[a]] == 0, t[[a]] = p; Print[{a, p}]];  p = NextPrime@ p]; t (* Robert G. Wilson v, Oct 13 2014 *)

Extensions

More terms from Robert G. Wilson v, Dec 11 2013

A201908 Irregular triangle of 2^k mod (2n-1).

Original entry on oeis.org

0, 1, 2, 1, 2, 4, 3, 1, 2, 4, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 9
Offset: 1

Views

Author

T. D. Noe, Dec 07 2011

Keywords

Comments

The length of the rows is given by A002326. For n > 1, the first term of row n is 1 and the last term is n. Many sequences are in this one: starting at A036117 (mod 11) and A070335 (mod 23).
Row n, for n >= 2, divided elementwise by (2*n-1) gives the cycles of iterations of the doubling function D(x) = 2*x or 2*x-1 if 0 <= x < 1/2 or , 1/2 <= x < 1, respectively, with seed 1/(2*n-1). See the Devaney reference, pp. 25-26. D^[k](x) = frac(2^k/(2*n-1)), for k = 0, 1, ..., A002326(n-1) - 1. E.g., n = 3: 1/5, 2/5, 4/5, 3/5. - Gary W. Adamson and Wolfdieter Lang, Jul 29 2020.

Examples

			The irregular triangle T(n, k) begins:
n\k  0 1 2 3  4  5  6  7 8  9 10 11 12 13 14 15 16 17 ...
---------------------------------------------------------
1:   0
2:   1 2
3:   1 2 4 3
4:   1 2 4
5:   1 2 4 8  7  5
6:   1 2 4 8  5 10  9  7 3  6
7:   1 2 4 8  3  6 12 11 9  5 10  7
8:   1 2 4 8
9:   1 2 4 8 16 15 13  9
10:  1 2 4 8 16 13  7 14 9 18 17 15 11  3  6 12  5 10
... reformatted by _Wolfdieter Lang_, Jul 29 2020.
		

References

  • Robert L. Devaney, A First Course in Chaotic Dynamical Systems, Addison-Wesley., 1992. pp. 24-25

Crossrefs

Cf. A002326, A201909 (3^k), A201910 (5^k), A201911 (7^k).
Cf. A000034 (3), A070402 (5), A069705 (7), A036117 (11), A036118 (13), A062116 (17), A036120 (19), A070347 (21), A070335 (23), A070336 (25), A070337 (27), A036122 (29), A070338 (33), A070339 (35), A036124 (37), A070340 (39), A070348 (41), A070349 (43), A070350 (45), A070351 (47), A036128 (53), A036129 (59), A036130 (61), A036131 (67), A036135 (83), A036138 (101), A036140 (107), A201920 (125), A036144 (131), A036146 (139), A036147 (149), A036150 (163), A036152 (173), A036153 (179), A036154 (181), A036157 (197), A036159 (211), A036161 (227).

Programs

  • GAP
    R:=List([0..72],n->OrderMod(2,2*n+1));;
    Flat(Concatenation([0],List([2..11],n->List([0..R[n]-1],k->PowerMod(2,k,2*n-1))))); # Muniru A Asiru, Feb 02 2019
  • Mathematica
    nn = 30; p = 2; t = p^Range[0, nn]; Flatten[Table[If[IntegerQ[Log[p, n]], {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, 1, nn, 2}]]

Formula

T(n, k) = 2^k mod (2*n-1), n >= 1, k = 0, 1, ..., A002326(n-1) - 1.
T(n, k) = (2*n-1)*frac(2^k/(2*n-1)), n >= 1, k = 0, 1, ..., A002326(n-1) - 1, with the fractional part frac(x) = x - floor(x). - Wolfdieter Lang, Jul 29 2020

A216838 Odd primes for which 2 is not a primitive root.

Original entry on oeis.org

7, 17, 23, 31, 41, 43, 47, 71, 73, 79, 89, 97, 103, 109, 113, 127, 137, 151, 157, 167, 191, 193, 199, 223, 229, 233, 239, 241, 251, 257, 263, 271, 277, 281, 283, 307, 311, 313, 331, 337, 353, 359, 367, 383, 397, 401, 409, 431, 433, 439, 449, 457, 463, 479
Offset: 1

Views

Author

V. Raman, Sep 17 2012

Keywords

Comments

Alternately, for these primes p, the polynomial (x^p+1)/(x+1) is reducible over GF(2).
The prime p belongs to this sequence if and only if A002326((p-1)/2) != (p-1). If A002326((p-1)/2) = (p-1), then the prime p belongs to the sequence A001122. - V. Raman, Dec 01 2012
The only primitive root modulo 2 is 1. See A060749. Hence 2 should be added to this sequence in order to obtain the complement of A001122. - Wolfdieter Lang, May 19 2014

Crossrefs

Cf. A002326 (multiplicative order of 2 mod 2n+1)
Cf. A001122 (Primes for which 2 is a primitive root)
Cf. A115586 (Primes for which 2 is neither a primitive root nor a quadratic residue).

Programs

  • Maple
    select(t -> isprime(t) and numtheory[order](2,t) <> t-1, [seq](2*i+1,i=1..1000)); # Robert Israel, May 20 2014
  • Mathematica
    Select[Prime[Range[2, 100]], PrimitiveRoot[#] =!= 2 &] (* T. D. Noe, Sep 19 2012 *)
  • PARI
    forprime(p=3, 1000, if(znorder(Mod(2,p))!=p-1, print(p)))
    
  • PARI
    forprime(p=3, 1000, if(factormod((x^p+1)/(x+1), 2, 1)[1, 1]!=(p-1), print(p)))

Extensions

Name corrected by Wolfdieter Lang, May 19 2014

A036259 Numbers k such that the multiplicative order of 2 modulo k is odd.

Original entry on oeis.org

1, 7, 23, 31, 47, 49, 71, 73, 79, 89, 103, 127, 151, 161, 167, 191, 199, 217, 223, 233, 239, 263, 271, 311, 329, 337, 343, 359, 367, 383, 431, 439, 463, 479, 487, 497, 503, 511, 529, 553, 599, 601, 607, 623, 631, 647, 713, 719, 721, 727, 743, 751
Offset: 1

Views

Author

Keywords

Comments

Odd numbers k such that A007733(k) = A002326((k-1)/2) is odd.
Closed under multiplication. - Emmanuel Vantieghem, May 07 2025

Examples

			2^3 = 1 mod 7, 3 is odd, so 7 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 999, 2], OddQ[MultiplicativeOrder[2, #]]&] (* Jean-François Alcover, Dec 20 2017 *)
  • PARI
    is(n)=n%2 && znorder(Mod(2,n))%2 \\ Charles R Greathouse IV, Jun 24 2015
    
  • Python
    from sympy import n_order
    from itertools import count, islice
    def A036259_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:n_order(2,n)&1,count(max(startvalue,1)|1,2))
    A036259_list = list(islice(A036259_gen(),20)) # Chai Wah Wu, Feb 07 2023

A070677 Smallest m in range 1..phi(n) such that 5^m == 1 mod n, or 0 if no such number exists.

Original entry on oeis.org

0, 1, 2, 1, 0, 2, 6, 2, 6, 0, 5, 2, 4, 6, 0, 4, 16, 6, 9, 0, 6, 5, 22, 2, 0, 4, 18, 6, 14, 0, 3, 8, 10, 16, 0, 6, 36, 9, 4, 0, 20, 6, 42, 5, 0, 22, 46, 4, 42, 0, 16, 4, 52, 18, 0, 6, 18, 14, 29, 0, 30, 3, 6, 16, 0, 10, 22, 16, 22, 0, 5, 6, 72, 36, 0, 9, 30, 4, 39, 0
Offset: 1

Views

Author

N. J. A. Sloane and Amarnath Murthy, May 08 2002

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [Modorder(5, n): n in [2..100]]; // Vincenzo Librandi, Apr 01 2014
    
  • Mathematica
    Table[SelectFirst[Range[EulerPhi[n]], PowerMod[5, #, n] == 1 &, 0],{n, 80}] (* Paul F. Marrero Romero, Oct 04 2024 *)
  • Python
    from sympy import n_order
    def A070677(n): return n_order(5,n) if n%5 and n>1 else 0 # Chai Wah Wu, Feb 23 2023

A070682 Smallest m in range 1..phi(2n+1) such that 10^m == 1 mod 2n+1, or 0 if no such number exists.

Original entry on oeis.org

0, 1, 0, 6, 1, 2, 6, 0, 16, 18, 6, 22, 0, 3, 28, 15, 2, 0, 3, 6, 5, 21, 0, 46, 42, 16, 13, 0, 18, 58, 60, 6, 0, 33, 22, 35, 8, 0, 6, 13, 9, 41, 0, 28, 44, 6, 15, 0, 96, 2, 4, 34, 0, 53, 108, 3, 112, 0, 6, 48, 22, 5, 0, 42, 21, 130, 18, 0, 8, 46, 46, 6, 0, 42, 148
Offset: 0

Views

Author

N. J. A. Sloane and Amarnath Murthy, May 08 2002

Keywords

Crossrefs

Programs

  • PARI
    a(n) = {for (m = 1, eulerphi(2*n+1), if (10^m % (2*n+1) == 1, return (m));); return (0);} \\ Michel Marcus, Sep 14 2013

A070683 Smallest m in range 1..phi(2n+1) such that 12^m == 1 mod 2n+1, or 0 if no such number exists.

Original entry on oeis.org

0, 0, 4, 6, 0, 1, 2, 0, 16, 6, 0, 11, 20, 0, 4, 30, 0, 12, 9, 0, 40, 42, 0, 23, 42, 0, 52, 4, 0, 29, 15, 0, 4, 66, 0, 35, 36, 0, 6, 26, 0, 41, 16, 0, 8, 6, 0, 12, 16, 0, 100, 102, 0, 53, 54, 0, 112, 44, 0, 48, 11, 0, 100, 126, 0, 65, 6, 0, 136, 138, 0, 2, 4, 0, 148
Offset: 0

Views

Author

N. J. A. Sloane and Amarnath Murthy, May 08 2002

Keywords

Comments

a(n)=2*n if 2*n+1 is in A019340, otherwise a(n)<2*n. - Robert Israel, Apr 17 2019

Crossrefs

Programs

  • Maple
    f:= proc(n)
      if n mod 3 = 1 then 0 else numtheory:-order(12,2*n+1) fi
    end proc:
    0, seq(f(n),n=1..100); # Robert Israel, Apr 16 2019
  • Mathematica
    a[n_] := Module[{s}, s = SelectFirst[Range[EulerPhi[2n+1]], PowerMod[12, #, 2n+1] == 1&]; If[s === Missing["NotFound"], 0, s]];
    a /@ Range[0, 100] (* Jean-François Alcover, Jun 04 2020 *)

A086251 Number of primitive prime factors of 2^n - 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 1, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 3, 2, 3, 2, 2, 3
Offset: 1

Views

Author

T. D. Noe, Jul 14 2003

Keywords

Comments

A prime factor of 2^n - 1 is called primitive if it does not divide 2^r - 1 for any r < n. Equivalently, p is a primitive prime factor of 2^n - 1 if ord(2,p) = n. Zsigmondy's theorem says that there is at least one primitive prime factor for n > 1, except for n=6. See A086252 for those n that have a record number of primitive prime factors.
Number of odd primes p such that A002326((p-1)/2) = n. Number of occurrences of number n in A014664. - Thomas Ordowski, Sep 12 2017
The prime factors are not counted with multiplicity, which matters for a(364)=4 and a(1755)=6. - Jeppe Stig Nielsen, Sep 01 2020

Examples

			a(11) = 2 because 2^11 - 1 = 23*89 and both 23 and 89 have order 11.
		

Crossrefs

Cf. A046800, A046051 (number of prime factors, with repetition, of 2^n-1), A086252, A002588, A005420, A002184, A046801, A049093, A049094, A059499, A085021, A097406, A112927, A237043.

Programs

  • Mathematica
    Join[{0}, Table[cnt=0; f=Transpose[FactorInteger[2^n-1]][[1]]; Do[If[MultiplicativeOrder[2, f[[i]]]==n, cnt++ ], {i, Length[f]}]; cnt, {n, 2, 200}]]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*omega(2^d-1)); \\ Michel Marcus, Sep 12 2017
    
  • PARI
    a(n) = my(m=polcyclo(n, 2)); omega(m/gcd(m,n)) \\ Jeppe Stig Nielsen, Sep 01 2020

Formula

a(n) = Sum{d|n} mu(n/d) A046800(d), inverse Mobius transform of A046800.
a(n) <= A182590(n). - Thomas Ordowski, Sep 14 2017
a(n) = A001221(A064078(n)). - Thomas Ordowski, Oct 26 2017

Extensions

Terms to a(500) in b-file from T. D. Noe, Nov 11 2010
Terms a(501)-a(1200) in b-file from Charles R Greathouse IV, Sep 14 2017
Terms a(1201)-a(1206) in b-file from Max Alekseyev, Sep 11 2022

A024222 Number of shuffles (perfect faro shuffles with cut) required to return a deck of size n to its original order.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 3, 3, 6, 6, 10, 10, 12, 12, 4, 4, 8, 8, 18, 18, 6, 6, 11, 11, 20, 20, 18, 18, 28, 28, 5, 5, 10, 10, 12, 12, 36, 36, 12, 12, 20, 20, 14, 14, 12, 12, 23, 23, 21, 21, 8, 8, 52, 52, 20, 20, 18, 18, 58, 58, 60, 60, 6, 6, 12, 12, 66, 66, 22, 22, 35, 35, 9, 9, 20, 20
Offset: 1

Views

Author

Keywords

Examples

			a(52)=8: a deck of size 52 returns to its original order in 8 perfect faro shuffles.
		

References

  • Martin Gardner, "Card Shuffles," Mathematical Carnival chapter 10, pp. 123-138. New York: Vintage Books, 1977.
  • S. Brent Morris, Magic Tricks, Card Shuffling and Dynamic Computer Memories, Math. Assoc. Am., 1998, p. 107.

Crossrefs

A002326 is really the fundamental sequence for this problem. Cf. A024542.

Programs

Previous Showing 41-50 of 198 results. Next