cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 172 results. Next

A284919 Even integers E such that there is no prime p < E with E - p and E + p both prime.

Original entry on oeis.org

0, 2, 4, 6, 28, 38, 52, 58, 62, 68, 74, 80, 82, 88, 94, 98, 112, 118, 122, 124, 128, 136, 146, 148, 152, 158, 164, 166, 172, 178, 182, 184, 188, 190, 206, 208, 212, 214, 218, 220, 224, 238, 242, 244, 248, 250, 256, 262, 268, 278, 284, 290, 292, 296, 298
Offset: 1

Views

Author

Claudio Meller, Apr 05 2017

Keywords

Comments

Or, even integers k such that k + p is composite for all primes p, q with p + q = k.
The two initial terms vacuously satisfy the definition, but all even numbers >= 4 are the sum of two primes, according to the Goldbach conjecture.
All odd numbers except for numbers m such that m-2 and m+2 are prime (= A087679) would satisfy the definition. - M. F. Hasler, Apr 05 2017
Conjecture: except for a(4)=6, all terms are coprime to 3. - Bob Selcoe, Apr 06 2017
If E is an even number not divisible by 3, then E is in the sequence unless E-3 and at least one of E+3 and 2E-3 are prime. - Robert Israel, Apr 10 2017
Consider a subsequence with the additional condition: n+odd part of p-1 is composite (for example, for p=19 it is 9). I found that this subsequence begins 0,2,118 and up to 300000 Peter J. C. Moses found only more one term 868. Is this subsequence finite? - Vladimir Shevelev, Apr 12 2017
One can compare the theoretical maxima with the actual sequence numbers of terms. Doing this at powers of 10, we see at powers {2,3,4,5,6} the ratio progression {2.33, 1.51, 1.25, 1.15, 1.096}. This implies that the excluded even numbers become increasingly rare (those coprime to 3). - Bill McEachen, Apr 17 2017
From Robert Israel's comment and the distribution of primes, the proportion of even numbers not divisible by 3 that are in the sequence tends to 1. - Peter Munn, Apr 23 2017
Moreover, If n is not divisible by 3 and 2*n - 3 is composite, then 2*n+p is also composite. Indeed, for these 2*n all primes p such that 2*n-p is prime are in the interval (3, 2*n-3). Then either 2*n-p or 2*n+p should be divisible by 3, but 2*n-p is a prime > 3. So 2*n+p is composite and 2*n is in the sequence. - Vladimir Shevelev, Apr 28 2017

Examples

			k=28 is in the sequence because 5+23 = 28 and 11+17 = 28, and 28 + {5,11,17,23} are composite; k=26 is not in the sequence because 3+23 = 26, 7+19 = 26 and 13+13 = 26, but 26+3 = 29 (prime).  - _Bob Selcoe_, Apr 06 2017
		

Crossrefs

Cf. A284928 (terms/2), A002375 (number of decompositions p + q = 2k), A020481 (least p: p + q = 2k), A277688 (an analog for decompositions odd k as 2p+q).

Programs

  • Mathematica
    fQ[n_] :=  Select[Select[Prime@Range@PrimePi@n, PrimeQ[n - #] &],    PrimeQ[n + #] &] == {}; Select[2 Range[0, 150], fQ] (* Robert G. Wilson v, Apr 05 2017 *)
  • PARI
    is(n)=!bittest(n,0)&&!forprime(p=2,n\2, isprime(n-p) && (isprime(n+p) || isprime(2*n-p)) && return) \\ Charles R Greathouse IV and M. F. Hasler, Apr 05 2017

Formula

a(n) = 2*A284928(n). - M. F. Hasler, Apr 06 2017

A227908 Number of ways to write 2*n = p + q with p, q and (p-1)^2 + q^2 all prime.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 2, 2, 0, 2, 6, 1, 3, 5, 2, 3, 2, 1, 2, 2, 5, 4, 3, 2, 3, 8, 1, 4, 3, 3, 2, 5, 1, 2, 4, 5, 3, 4, 4, 2, 6, 1, 4, 5, 3, 3, 6, 2, 6, 5, 4, 5, 7, 3, 1, 9, 2, 3, 6, 1, 2, 5, 4, 7, 2, 7, 6, 6, 2, 4, 10, 3, 3, 6, 1, 7, 9, 5, 4, 5, 4, 3, 5, 3, 5, 8, 4, 4, 5, 2, 11, 9, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 12 2013

Keywords

Comments

Conjecture: a(n) > 0 except for n = 1, 16, 292.
This implies not only Goldbach's conjecture for even numbers, but also Ming-Zhi Zhang's conjecture (cf. A036468) that any odd number greater than one can be written as x + y (x, y > 0) with x^2 + y^2 prime.
We have verified the conjecture for n up to 10^7.
Conjecture verified for n up tp 10^9. - Mauro Fiorentini, Sep 21 2023

Examples

			a(7) = 1 since 2*7 = 11 + 3, and (11-1)^2 + 3^2 = 109 is prime.
a(19) = 1 since 2*19 = 7 + 31, and (7-1)^2 + 31^2 = 997 is prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2n-Prime[i]]&&PrimeQ[(Prime[i]-1)^2+(2n-Prime[i])^2],1,0],{i,1,PrimePi[2n-2]}]
    Table[a[n],{n,1,100}]

A228956 Number of undirected circular permutations i_0, i_1, ..., i_n of 0, 1, ..., n such that all the 2*n+2 numbers |i_0 +/- i_1|, |i_1 +/- i_2|, ..., |i_{n-1} +/- i_n|, |i_n +/- i_0| have the form (p-1)/2 with p an odd prime.

Original entry on oeis.org

1, 1, 1, 1, 5, 9, 17, 84, 30, 127, 791, 2404, 11454, 27680, 25942, 137272, 515947, 2834056, 26583034, 82099932, 306004652, 4518630225, 11242369312, 8942966426, 95473633156, 533328765065
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 09 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0.
Note that if i-j = (p-1)/2 and i+j = (q-1)/2 for some odd primes p and q then 4*i+2 is the sum of the two primes p and q. So the conjecture is related to Goldbach's conjecture.
Zhi-Wei Sun also made the following similar conjecture: For any integer n > 5, there exists a circular permutation i_0, i_1, ..., i_n of 0, 1, ..., n such that all the 2*n+2 numbers 2*|i_k-i_{k+1}|+1 and 2*(i_k+i_{k+1})-1 (k = 0,...,n) (with i_{n+1} = i_0) are primes.

Examples

			a(n) = 1 for n = 1,2,3 due to the natural circular permutation (0,...,n).
a(4) = 1 due to the circular permutation (0,1,4,2,3).
a(5) = 5 due to the circular permutations (0,1,2,4,5,3), (0,1,4,2,3,5), (0,1,4,5,3,2), (0,2,1,4,5,3), (0,3,2,1,4,5).
a(6) = 9 due to the circular permutations
  (0,1,2,4,5,3,6), (0,1,2,4,5,6,3), (0,1,4,2,3,5,6),
  (0,1,4,2,3,6,5), (0,1,4,5,6,3,2), (0,2,1,4,5,3,6),
  (0,2,1,4,5,6,3), (0,3,2,1,4,5,6), (0,5,4,1,2,3,6).
a(7) = 17 due to the circular permutations
  (0,1,2,7,4,5,3,6), (0,1,2,7,4,5,6,3), (0,1,4,7,2,3,5,6),
  (0,1,4,7,2,3,6,5), (0,1,7,2,4,5,3,6), (0,1,7,2,4,5,6,3),
  (0,1,7,4,2,3,5,6), (0,1,7,4,2,3,6,5), (0,1,7,4,5,6,3,2),
  (0,2,1,7,4,5,3,6), (0,2,1,7,4,5,6,3), (0,2,7,1,4,5,3,6),
  (0,2,7,1,4,5,6,3), (0,3,2,1,7,4,5,6), (0,3,2,7,1,4,5,6),
  (0,5,4,1,7,2,3,6), (0,5,4,7,1,2,3,6).
		

Crossrefs

Programs

  • Mathematica
    (* A program to compute required circular permutations for n = 7. To get "undirected" circular permutations, we should identify a circular permutation with the one of the opposite direction; for example, (0,6,3,5,4,7,2,1) is identical to (0,1,2,7,4,5,3,6) if we ignore direction. Thus a(7) is half of the number of circular permutations yielded by this program. *)
    p[i_,j_]:=PrimeQ[2*Abs[i-j]+1]&&PrimeQ[2(i+j)+1]
    V[i_]:=Part[Permutations[{1,2,3,4,5,6,7}],i]
    m=0
    Do[Do[If[p[If[j==0,0,Part[V[i],j]],If[j<7,Part[V[i],j+1],0]]==False,Goto[aa]],{j,0,7}]; m=m+1;Print[m,":"," ",0," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]];Label[aa];Continue,{i,1,7!}]

Extensions

a(10)-a(26) from Max Alekseyev, Sep 17 2013

A230252 Number of ways to write n = x + y (x, y > 0) with 2*x + 1, x^2 + x + 1 and y^2 + y + 1 all prime.

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 4, 4, 4, 3, 4, 1, 3, 3, 3, 5, 5, 4, 3, 6, 4, 7, 7, 2, 4, 6, 4, 4, 6, 3, 1, 4, 2, 4, 7, 4, 1, 4, 4, 2, 6, 4, 3, 4, 2, 3, 5, 3, 2, 1, 2, 3, 6, 2, 6, 6, 3, 5, 4, 5, 3, 7, 2, 4, 6, 2, 4, 5, 3, 5, 8, 5, 2, 10, 4, 4, 8, 5, 6, 7, 8, 4, 11, 4, 3, 6, 4, 2, 4, 8, 8, 11, 5, 3, 11, 5, 3, 6, 4, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 13 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1.
(ii) Any integer n > 3 can be written as p + q with p, 2*p - 3 and q^2 + q + 1 all prime. Also, each integer n > 3 not equal to 30 can be expressed as p + q with p, q^2 + q - 1 and q^2 + q + 1 all prime.
(iii) Any integer n > 1 can be written as x + y (x, y > 0) with x^2 + 1 (or 4*x^2+1) and y^2 + y + 1 (or 4*y^2 + 1) both prime.
(iv) Each integer n > 3 can be expressed as p + q (q > 0) with p, 2*p - 3 and 4*q^2 + 1 all prime.
(v) Any even number greater than 4 can be written as p + q with p, q and p^2 + 4 (or p^2 - 2) all prime. Also, each even number greater than 2 and not equal to 122 can be expressed as p + q with p, q and (p-1)^2 + 1 all prime.
We have verified the first part for n up to 10^8.

Examples

			a(5) = 2 since 5 = 2 + 3 = 3 + 2, and 2*2+1 = 5, 2*3+1 = 7, 2^2+2+1 = 7, 3^2+3+1 = 13 are all prime.
a(31) = 1 since 31 = 14 + 17, and 2*14+1 = 29, 14^2+14+1 = 211 and 17^2+17+1 = 307 are all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2i+1]&&PrimeQ[i^2+i+1]&&PrimeQ[(n-i)^2+n-i+1],1,0],{i,1,n-1}]
    Table[a[n],{n,1,100}]

A235645 From Goldbach's conjecture and Chen's theorem: number of decompositions of 2n as the sum of either two primes, or a prime and a semiprime.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 5, 4, 3, 3, 4, 5, 5, 5, 5, 5, 5, 4, 6, 6, 5, 6, 6, 4, 6, 7, 8, 8, 8, 7, 9, 8, 8, 7, 9, 8, 9, 8, 6, 9, 9, 10, 10, 9, 9, 12, 12, 11, 13, 12, 10, 11, 11, 9, 12, 11, 12, 11, 11, 12, 15, 14, 12, 12, 12
Offset: 1

Views

Author

Jean-François Alcover, Jan 13 2014

Keywords

Comments

The first 15 terms from this sequence and from A045917 are identical.

Examples

			40 = 23+17 = 29+11 = 37+3, so a(20) = 3.
Compare with 40 = 23+17 = 29+11 = 31+9 = 37+3 and A045917(20) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Count[IntegerPartitions[2*n, {2}], {p_, q_} /; PrimeQ[p] && (PrimeQ[q] || Length[FactorInteger[q]] == 2)]; Table[a[n], {n, 1, 100}]

A237168 Number of ways to write 2*n - 1 = 2*p + q with p, q, phi(p+1) - 1 and phi(p+1) + 1 all prime, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 2, 2, 2, 3, 1, 3, 3, 2, 2, 4, 1, 1, 3, 2, 2, 3, 1, 1, 3, 2, 2, 2, 1, 2, 3, 2, 2, 4, 1, 4, 5, 2, 1, 6, 3, 3, 2, 3, 2, 5, 1, 2, 5, 3, 3, 4, 3, 2, 6, 4, 4, 5, 2, 3, 7, 2, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 04 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 12.
(ii) Any even number greater than 4 can be written as p + q with p, q, phi(p+2) - 1 and phi(p+2) + 1 all prime.
Part (i) implies both Lemoine's conjecture (cf. A046927) and the twin prime conjecture, while part (ii) unifies Goldbach's conjecture and the twin prime conjecture.

Examples

			a(9) = 1 since 2*9 - 1 = 2*7 + 3 with 7, 3, phi(7+1) - 1 = 3 and phi(7+1) + 1 = 5 all prime.
a(934) = 1 since 2*934 - 1 = 2*457 + 953 with 457, 953, phi(457+1) - 1 = 227 and phi(457+1) + 1 = 229 all prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=PrimeQ[EulerPhi[n]-1]&&PrimeQ[EulerPhi[n]+1]
    a[n_]:=Sum[If[PQ[Prime[k]+1]&&PrimeQ[2n-1-2*Prime[k]],1,0],{k,1,PrimePi[n-1]}]
    Table[a[n],{n,1,70}]

A240708 Number of decompositions of 2n into an unordered sum of two terms of A240699.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 4, 4, 2, 3, 4, 3, 4, 5, 4, 3, 5, 3, 4, 6, 3, 5, 6, 2, 5, 6, 5, 5, 7, 4, 5, 8, 5, 4, 9, 4, 5, 7, 3, 6, 8, 5, 6, 8, 6, 7, 10, 6, 6, 12, 4, 5, 10, 3, 7, 9, 6, 5, 8, 7, 8, 11, 6, 5, 12, 4, 8, 11, 5, 8, 10, 5, 6, 13, 9, 6, 11, 7, 7, 14, 6, 8, 13, 5, 8, 11, 7, 9, 13, 8, 9, 14, 7, 7, 19, 6, 7, 12, 6, 9
Offset: 1

Views

Author

Lei Zhou, Apr 10 2014

Keywords

Comments

The first different term of this sequence to A002375 is a(107).
Conjecture: for n >= 3, this sequence is always positive.
This is a stronger version of the Goldbach Conjecture.

Examples

			For n <= 106, refer to examples in A002375.
For n = 107, 2n=214. A240699 up to 214 gives {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199}.  We have 214 = 17+197 = 23+191 = 41+173 = 47+167 = 83+131 = 101+113 = 107+107. Seven instances found. So a(107)=7.
Where as for A002375, there is one more instance as 3+211, however 211 is not a term in A240699.
		

Crossrefs

Programs

  • Mathematica
    a240699 = {3}; Table[s = 2*n; While[a240699[[-1]] < s, p = a240699[[-1]]; While[p = NextPrime[p]; ((NextPrime[p] - p) > 6) && (6 < (p - NextPrime[p, -1]))]; AppendTo[a240699, p]]; pos = 0; ct = 0; While[pos++; pos <= Length[a240699], p = a240699[[pos]]; If[p <= n, If[MemberQ[a240699, s - p], ct++]]]; ct, {n, 1, 110}]

A240712 Number of decompositions of 2n into an unordered sum of two terms of A240710.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 1, 3, 4, 2, 2, 4, 2, 3, 5, 3, 3, 5, 2, 4, 6, 2, 4, 6, 2, 4, 6, 4, 4, 7, 4, 4, 8, 4, 4, 9, 3, 5, 7, 3, 5, 8, 4, 5, 8, 5, 6, 10, 5, 6, 12, 4, 5, 10, 3, 6, 9, 5, 5, 8, 6, 7, 11, 6, 5, 12, 3, 7, 11, 5, 7, 10, 5, 5, 13, 8
Offset: 1

Views

Author

Lei Zhou, Apr 10 2014

Keywords

Comments

a(n) differs from A171611 beginning at term a(264). To show the difference, the first 270 terms are listed.
Conjecture: a(n) > 0 for all n > 4.
This is a much stronger version of the Goldbach Conjecture.

Examples

			For n < 264, please refer to examples at A171611.
For n = 264, 2n=528. A240710 has terms {5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521} up to 528, where prime number 523 < 528 is not in the set, such that 528 = 5 + 523 is not counted in this sequence but is counted in A171611. So a(264) = A171611(264)-1 = 25-1 = 24.
		

Crossrefs

Programs

  • Mathematica
    a240710 = {5}; Table[s = 2*n; While[a240710[[-1]] < s, p = a240710[[-1]]; While[p = NextPrime[p]; ok = 0; a1 = p - 12; a2 = p - 6; a3 = p + 6; a4 = p + 12; If[a1 > 0, If[PrimeQ[a1], ok = 1]]; If[a2 > 0, If[PrimeQ[a2], ok = 1]]; If[PrimeQ[a3], ok = 1]; If[PrimeQ[a4], ok = 1]; ok == 0]; AppendTo[a240710, p]]; pos = 0; ct = 0; While[pos++; pos <= Length[a240710], p = a240710[[pos]]; If[p <= n, If[MemberQ[a240710, s - p], ct++]]]; ct, {n, 1, 270}]

A258140 Number of ways to write 6*n + 2 as p^2 + q with p and q both prime.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 0, 2, 2, 3, 2, 1, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 0, 4, 4, 5, 1, 4, 4, 2, 2, 2, 3, 3, 3, 5, 1, 3, 3, 4, 4, 1, 2, 3, 4, 3, 1, 5, 4, 5, 1, 1, 3, 4, 6, 4, 2, 3, 2, 6, 7, 3, 2, 2, 3, 5, 3, 4, 4, 4, 5, 2, 5, 2, 4, 6, 1, 5, 2, 5, 5, 2, 3, 3, 4, 4, 2, 4, 5, 6, 3, 2, 4, 5, 6
Offset: 0

Views

Author

Zhi-Wei Sun, May 22 2015

Keywords

Comments

Conjecture: a(n) > 0 except for n = 0, 1, 12, 28, 102, 117, 168, 4079.
See also the comments in A258139.

Examples

			a(5) = 2 since 6*5 + 2 = 3^2 + 23 = 5^2 + 7 with 3, 23, 5, 7 all prime.
		

Crossrefs

Programs

  • Mathematica
    Do[r=0;Do[If[PrimeQ[6n+2-Prime[k]^2],r=r+1],{k,1,PrimePi[Sqrt[6n+2]]}];Print[n," ",r];Continue,{n,0,100}]
  • PARI
    a(n)=my(t=6*n+2,s); forprime(p=2,sqrtint(t-2), if(isprime(t-p^2), s++)); s \\ Charles R Greathouse IV, May 26 2015

A258141 Number of ways to write n as p^2 + q with p, q and 2*p + 3 all prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 2, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 1, 2, 0, 2, 0, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 0, 2, 0, 1, 0, 0
Offset: 1

Views

Author

Zhi-Wei Sun, May 22 2015

Keywords

Comments

Conjecture: For any integer n > 0, we have a(n+r) > 0 for some r = 0,1,2,3,4,5.
We have verified this for n up to 10^8. See also A258139 for a weaker version of this conjecture.
The conjecture is somewhat similar to Goldbach's Conjecture. It implies that there are infinitely many primes p with 2*p + 3 prime.

Examples

			a(11) = 1 since 11 = 2^2 + 7 with 2, 7 and 2*2 + 3 all prime.
		

Crossrefs

Programs

  • Mathematica
    Do[r=0;Do[If[PrimeQ[2Prime[k]+3]&&PrimeQ[n-Prime[k]^2],r=r+1],{k,1,PrimePi[Sqrt[n]]}];Print[n," ",r];Continue,{n,1,100}]
Previous Showing 41-50 of 172 results. Next