cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 84 results. Next

A082832 Decimal expansion of Sum_{k >= 1, k has no digit 3 in base 10} 1/k.

Original entry on oeis.org

2, 0, 5, 6, 9, 8, 7, 7, 9, 5, 0, 9, 6, 1, 2, 3, 0, 3, 7, 1, 0, 7, 5, 2, 1, 7, 4, 1, 9, 0, 5, 3, 1, 1, 1, 4, 1, 4, 1, 5, 3, 8, 6, 9, 6, 7, 4, 7, 3, 0, 7, 8, 3, 4, 8, 9, 5, 0, 8, 5, 2, 8, 5, 0, 0, 2, 6, 7, 2, 9, 4, 9, 9, 6, 1, 9, 3, 8, 0, 3, 5, 0, 0, 5, 9, 0, 4, 7, 4, 9, 4, 0, 8, 0, 6, 0, 3, 5, 3, 4, 9, 8, 7, 9, 0
Offset: 2

Views

Author

Robert G. Wilson v, Apr 14 2003

Keywords

Comments

Numbers with a digit 3 (A011533) have asymptotic density 1, i.e., almost all terms are removed from the harmonic series, which makes convergence less surprising. See A082839 (the analog for digit 0) for more information about such so-called Kempner series. - M. F. Hasler, Jan 13 2020

Examples

			20.569877950961230371075217419053111414153869674730783489508528500... - _Robert G. Wilson v_, Jun 01 2009
		

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.

Crossrefs

Cf. A002387, A024101, A052405 (numbers with no '3'), A011533 (numbers with '3').
Cf. A082830, A082831, A082833, A082834, A082835, A082836, A082837, A082838, A082839 (analog for digits 1, 2, 4, ..., 9 and 0).

Programs

  • Mathematica
    (* see the Mmca in Wolfram Library Archive. - Robert G. Wilson v, Jun 01 2009 *)

Formula

Equals Sum_{k in A052405\{0}} 1/k, where A052405 = numbers with no digit 3. - M. F. Hasler, Jan 15 2020

Extensions

More terms from Robert G. Wilson v, Jun 01 2009

A082833 Decimal expansion of Kempner series Sum_{k >= 1, k has no digit 4 in base 10} 1/k.

Original entry on oeis.org

2, 1, 3, 2, 7, 4, 6, 5, 7, 9, 9, 5, 9, 0, 0, 3, 6, 6, 8, 6, 6, 3, 9, 4, 0, 1, 4, 8, 6, 9, 3, 9, 5, 1, 2, 8, 4, 3, 7, 5, 0, 9, 5, 1, 7, 0, 3, 2, 7, 0, 0, 2, 1, 8, 1, 7, 2, 5, 1, 1, 8, 9, 5, 4, 1, 9, 7, 7, 8, 8, 4, 2, 7, 2, 4, 5, 1, 3, 3, 5, 3, 7, 5, 3, 8, 1, 2, 0, 1, 3, 0, 2, 8, 4, 0, 6, 9, 3, 5, 4, 7, 7, 8, 9, 7
Offset: 2

Views

Author

Robert G. Wilson v, Apr 14 2003

Keywords

Comments

Numbers with a digit 4 (A011534) have asymptotic density 1, i.e., here almost all terms are removed from the harmonic series, which makes convergence less surprising. See A082839 (the analog for digit 0) for more information about such so-called Kempner series. - M. F. Hasler, Jan 13 2020

Examples

			21.32746579959003668663940148693951284375095170327002181725118954... - _Robert G. Wilson v_, Jun 01 2009
		

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.

Crossrefs

Cf. A002387, A024101, A052406 (numbers with no 4), A011534 (numbers with a 4).
Cf. A082830, A082831, A082832, A082834, A082835, A082836, A082837, A082838, A082839 (analog for digits 1, 2, ..., 9 and 0).

Programs

  • Mathematica
    (* see the Mmca in Wolfram Library Archive *) (* Robert G. Wilson v, Jun 01 2009 *)
  • PARI
    sumpos(k=2,1/A052406(k)) \\ For illustration only, slow and not very precise: with \p19 takes 2 sec to get 5 digits right. - M. F. Hasler, Jan 13 2020

Formula

Equals Sum_{k in A052406\{0}} 1/k, where A052406 = numbers with no digit 3. - M. F. Hasler, Jan 15 2020

Extensions

More terms from Robert G. Wilson v, Jun 01 2009

A082834 Decimal expansion of Kempner series Sum_{k>=1, k has no digit 5 in base 10} 1/k.

Original entry on oeis.org

2, 1, 8, 3, 4, 6, 0, 0, 8, 1, 2, 2, 9, 6, 9, 1, 8, 1, 6, 3, 4, 0, 7, 2, 3, 5, 0, 4, 0, 6, 0, 9, 1, 8, 2, 7, 1, 7, 8, 4, 6, 5, 6, 7, 5, 1, 5, 0, 1, 3, 9, 1, 8, 2, 9, 1, 6, 7, 9, 3, 5, 9, 1, 8, 4, 2, 5, 0, 8, 6, 2, 6, 6, 8, 8, 2, 2, 9, 3, 8, 3, 5, 7, 7, 7, 2, 1, 3, 8, 3, 1, 9, 3, 2, 9, 2, 5, 4, 8, 8, 1, 3, 2, 4, 4
Offset: 2

Views

Author

Robert G. Wilson v, Apr 14 2003

Keywords

Comments

Numbers with a digit 5 (A011535) have asymptotic density 1, i.e., here almost all terms are removed from the harmonic series, which makes convergence less surprising. See A082839 (the analog for digit 0) for more information about such so-called Kempner series. - M. F. Hasler, Jan 13 2020

Examples

			21.83460081229691816340723504060918271784656751501391829167935918... - _Robert G. Wilson v_, Jun 01 2009
		

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.

Crossrefs

Cf. A002387, A024101, A052413 (numbers with no '5'), A011535 (numbers with a '5').
Cf. A082830, A082831, A082832, A082833, A082835, A082836, A082837, A082838, A082839 (analog for digits 1, 2, ..., 9 and 0).

Programs

  • Mathematica
    (* see the Mmca in Wolfram Library Archive. - Robert G. Wilson v, Jun 01 2009 *)

Formula

Equals Sum_{k in A052413\{0}} 1/k, where A052413 = numbers with no digit 5. - M. F. Hasler, Jan 15 2020

Extensions

More terms from Robert G. Wilson v, Jun 01 2009
Minor edits by M. F. Hasler, Jan 13 2020

A082835 Decimal expansion of Kempner series Sum_{k >= 1, k has no digit 6 in base 10} 1/k.

Original entry on oeis.org

2, 2, 2, 0, 5, 5, 9, 8, 1, 5, 9, 5, 5, 6, 0, 9, 1, 8, 8, 4, 1, 6, 7, 3, 8, 0, 4, 8, 0, 0, 0, 7, 5, 2, 7, 1, 0, 5, 1, 9, 3, 8, 5, 6, 1, 0, 6, 6, 6, 8, 4, 6, 3, 2, 7, 0, 2, 7, 6, 9, 3, 8, 2, 3, 3, 0, 5, 3, 2, 2, 8, 3, 5, 0, 8, 9, 1, 2, 4, 7, 5, 2, 6, 3, 4, 7, 7, 7, 6, 9, 9, 7, 4, 0, 5, 8, 9, 1, 4, 9, 3, 4, 4, 2, 5
Offset: 2

Views

Author

Robert G. Wilson v, Apr 14 2003

Keywords

Comments

Numbers with a digit 6 (A011536) have asymptotic density 1, i.e., here almost all terms are removed from the harmonic series, which makes convergence less surprising. See A082839 (the analog for digit 0) for more information about such so-called Kempner series. - M. F. Hasler, Jan 13 2020

Examples

			22.20559815955609188416738048000752710519385610666846327027693823... - _Robert G. Wilson v_, Jun 01 2009
		

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.

Crossrefs

Cf. A002387, A024101, A052414 (numbers with no '6'), A011536 (numbers with a '6').
Cf. A082830, A082831, A082832, A082833, A082834, A082836, A082837, A082838, A082839 (analog for digits 1, 2, 4, ..., 9 and 0).

Programs

  • Mathematica
    (* see the Mmca in Wolfram Library Archive. - Robert G. Wilson v, Jun 01 2009 *)

Formula

Equals Sum_{k in A052414\{0}} 1/k, where A052414 = numbers with no digit 6. - M. F. Hasler, Jan 15 2020

Extensions

Minor edits by M. F. Hasler, Jan 13 2020

A082836 Decimal expansion of Kempner series Sum_{k >= 1, k has no digit 7 in base 10} 1/k.

Original entry on oeis.org

2, 2, 4, 9, 3, 4, 7, 5, 3, 1, 1, 7, 0, 5, 9, 4, 5, 3, 9, 8, 1, 7, 6, 2, 2, 6, 9, 1, 5, 3, 3, 9, 7, 7, 5, 9, 7, 4, 0, 0, 5, 9, 1, 5, 5, 4, 1, 6, 7, 2, 5, 1, 2, 3, 6, 1, 7, 9, 1, 4, 6, 0, 4, 4, 4, 0, 7, 1, 0, 5, 1, 2, 0, 0, 9, 5, 0, 7, 4, 0, 8, 5, 1, 4, 3, 2, 2, 2, 0, 8, 2, 3, 4, 5, 0, 0, 2, 1, 9, 1, 9, 2, 2, 5, 4
Offset: 2

Views

Author

Robert G. Wilson v, Apr 14 2003

Keywords

Comments

Numbers with a digit 7 (A011537) have asymptotic density 1, i.e., here almost all terms are removed from the harmonic series, which makes convergence less surprising. See A082839 (the analog for digit 0) for more information about such so-called Kempner series. - M. F. Hasler, Jan 13 2020

Examples

			22.493475311705945398176226915339775974005915541672512361791460444... - _Robert G. Wilson v_, Jun 01 2009
		

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.

Crossrefs

Cf. A002387, A024101, A052419 (numbers with no '7'), A011537 (numbers with a '7').
Cf. A082830, A082831, A082832, A082833, A082834, A082835, A082837, A082838, A082839 (analog for digits 1, 2, ..., 9 and 0).

Programs

  • Mathematica
    (* see the Mmca in Wolfram Library Archive. - Robert G. Wilson v, Jun 01 2009 *)

Formula

Equals Sum_{k in A052419\{0}} 1/k, where A052419 = numbers with no digit 7. - M. F. Hasler, Jan 14 2020

Extensions

More terms from Robert G. Wilson v, Jun 01 2009
Minor edits by M. F. Hasler, Jan 13 2020

A082837 Decimal expansion of Kempner series Sum_{k >= 1, k has no digit 8 in base 10} 1/k.

Original entry on oeis.org

2, 2, 7, 2, 6, 3, 6, 5, 4, 0, 2, 6, 7, 9, 3, 7, 0, 6, 0, 2, 8, 3, 3, 6, 4, 4, 1, 5, 6, 7, 4, 2, 5, 5, 7, 8, 8, 9, 2, 1, 0, 7, 0, 2, 6, 1, 6, 3, 6, 0, 2, 1, 9, 8, 4, 3, 5, 3, 6, 3, 7, 6, 1, 6, 2, 4, 0, 0, 4, 6, 8, 2, 0, 1, 7, 5, 1, 3, 4, 8, 1, 2, 7, 0, 1, 0, 5, 6, 2, 1, 6, 5, 1, 5, 8, 9, 2, 2, 4, 7, 7, 5, 7, 9, 3
Offset: 2

Views

Author

Robert G. Wilson v, Apr 14 2003

Keywords

Comments

Numbers with a digit 8 (A011538) have asymptotic density 1, i.e., here almost all terms are removed from the harmonic series, which makes convergence less surprising. See A082839 (the analog for digit 0) for more information about such so-called Kempner series. - M. F. Hasler, Jan 13 2020

Examples

			22.726365402679370602833644156742557889210702616360219843536376162... - _Robert G. Wilson v_, Jun 01 2009
		

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.

Crossrefs

Cf. A002387, A024101, A052421 (numbers with no '8'), A011538 (numbers with a '8').
Cf. A082830, A082831, A082832, A082833, A082834, A082835, A082836, A082838, A082839 (analog for digits 1, 2, 3, ..., 9 and 0).

Programs

  • Mathematica
    (* see the Mmca in Wolfram Library Archive. - Robert G. Wilson v, Jun 01 2009 *)

Formula

Equals Sum_{k in A052421\{0}} 1/k, where A052421 = numbers with no digit 8. - M. F. Hasler, Jan 14 2020

Extensions

More terms and links from Robert G. Wilson v, Jun 01 2009
Minor edits by M. F. Hasler, Jan 13 2020

A056053 a(n) = smallest odd number 2m+1 such that the partial sum of the odd harmonic series Sum_{j=0..m} 1/(2j+1) is > n.

Original entry on oeis.org

1, 3, 15, 113, 837, 6183, 45691, 337607, 2494595, 18432707, 136200301, 1006391657, 7436284415, 54947122715, 406007372211, 3000011249847, 22167251422541, 163795064320249, 1210290918990281, 8942907496445513, 66079645178783351, 488266205223462461, 3607826381608149807
Offset: 0

Views

Author

Robert G. Wilson v, Jul 25 2000 and Jan 11 2004

Keywords

Comments

a(2) = 15 and a(3) = 113 are related to the Borwein integrals. Concretely, a(2) = 15 is the smallest odd m such that the integral Integral_{x=-oo..oo} Product_{1<=k<=m, k odd} (sin(k*x)/(k*x)) dx is slightly less than Pi, and a(3) = 113 is the smallest odd m such that the integral Integral_{x=-oo..oo} cos(x) * Product_{1<=k<=m, k odd} (sin(k*x)/(k*x)) dx is slightly less than Pi/2. See the Wikipedia link and the 3Blue1Brown video link below. - Jianing Song, Dec 10 2022

References

  • Calvin C. Clawson, "Mathematical Mysteries, The Beauty and Magic of Numbers," Plenum Press, NY and London, 1996, page 64.

Crossrefs

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 2]; Print[k]; k += 2, {n, 1, 11}]

Formula

a(n) ~ floor((1/2)*A002387(2n)).
The next term is approximately the previous term * e^2.
a(n) = A092315(n)*2 + 1 = floor(exp(n*2-Euler)/4+1/8)*2+1 for all n (conjectured). - M. F. Hasler, Jan 24 2017
a(n) ~ exp(2*n - A350763) = (1/2)*exp(2*n - gamma), gamma = A001620. - A.H.M. Smeets, Apr 15 2022

Extensions

Corrected by N. J. A. Sloane, Feb 16 2004
More terms from Robert G. Wilson v, Apr 17 2004
a(17) corrected - see correction in A092315. - Gerhard Kirchner, Jul 25 2020
a(0) prepended by Robert G. Wilson v, Oct 23 2024

A055980 a(n) = floor(Sum_{i=1..n} 1/i).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Henry Bottomley, Jul 20 2000

Keywords

Comments

If we choose at random (uniformly) a permutation in the symmetric group S_n then a(n) is the expected number of cycles (rounded down) in the cycle decomposition of the permutation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 17 2001
a(n) = A214075(n,n-1) for n > 0. - Reinhard Zumkeller, Jul 03 2012

Crossrefs

Cf. A002387, A004080 (indices of records).

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a055980 = floor . sum . map (1 %) . enumFromTo 1
    a055980_list = map floor $ scanl1 (+) $ map (1 %) [1..]
    -- Reinhard Zumkeller, Jul 03 2012
  • Mathematica
    Floor[HarmonicNumber[Range[110]]] (* Harvey P. Dale, May 22 2021 *)

Formula

a(n) ~ log(n) - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
a(n) = floor[A001008(n)/A002805(n)]. - Lekraj Beedassy, Sep 17 2006

A092315 a(n) is the smallest m such that the partial sum of the odd harmonic series Sum_{j=0..m} 1/(2j+1) is > n.

Original entry on oeis.org

1, 7, 56, 418, 3091, 22845, 168803, 1247297, 9216353, 68100150, 503195828, 3718142207, 27473561357, 203003686105, 1500005624923, 11083625711270, 81897532160124, 605145459495140, 4471453748222756, 33039822589391675, 244133102611731230, 1803913190804074903
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2004

Keywords

Comments

From Gerhard Kirchner, May 21 2020: (Start)
The terms a(n), evaluated by the formula, should pass the test OH(a(n))=n and OH(a(n)-1)=n-1, where OH(m) is the odd harmonic series, see above.
Another formula, see link Asymptotic formulas, formula 1, is OH(m) = (log(4*m)+gamma)/2+1/(2*m)-11/(48*m^2)+1/(8*m^3)-127*t/(1920*m^4), 0
The Maxima code includes both tests and creates a b-file in the current directory. For n<=1000, the case "Precision too low" does not occur. (End)
a(2) = 7 and a(3) = 56 are related to the Borwein integrals. Concretely, a(2) = 7 is the smallest m such that the integral Integral_{x=-oo..oo} Product_{k=0..m} (sin((2*k+1)*x)/((2*k+1)*x)) dx is slightly less than Pi, and a(3) = 56 is the smallest m such that the integral Integral_{x=-oo..oo} cos(x) * Product_{k=0..m} (sin((2*k+1)*x)/((2*k+1)*x)) dx is slightly less than Pi/2. See the Wikipedia link and the 3Blue1Brown video link below. - Jianing Song, Dec 10 2022

Crossrefs

Except for first term, same as A092318. Equals (A056053-1)/2.

Programs

  • Mathematica
    A092315[n_] := Floor[Exp[2*n - EulerGamma]/4]; Table[A092315[n], {n, 1, 22}] (* Robert P. P. McKone, Jul 13 2021 *)
  • Maxima
    block(
    fpprec:1000, gam: %gamma, nmax:1000,
    fl: openw("bfile1000.txt"),
    OH(k,t):=(log(4*k)+gam)/2+1/(2*k)-11/(48*k^2)+1/(8*k^3)-127*t/(1920*k^4),
    printf(fl, "1 1"),   newline(fl),
    for n from 2 thru nmax do
    (u: bfloat(exp(2*n-gam)/4), k: floor(u),
    x0: bfloat(OH(k,0)), x01: bfloat(OH(k,1)), x1: bfloat(OH(k-1,0)),
    n0: floor(x0), n01: floor(x01), n1: floor(x1),  m: n,
    if n0=n and n01=n and n1=n-1 then
             (h: concat(n, " ", k), printf(fl, h),  newline(fl)) else n: nmax),
    if mGerhard Kirchner, Jul 23 2020 */
    /* The first nmax terms are saved as a b-file */

Formula

a(n) = floor(exp(2*n-gamma)/4+1/8) for all n >= 1 (conjectured; see also comments in A002387). - M. F. Hasler, Jan 22 2017
a(n) = floor(exp(2*n-gamma)/4). - Gerhard Kirchner, Jul 23 2020

Extensions

More terms from M. F. Hasler, Jan 24 2017
a(17) in the data section and 127 terms in the b-file corrected by Gerhard Kirchner, Jul 23 2020

A074631 a(n) is the smallest k such that the sum of the first k terms of the composite-harmonic series, Sum_{j=1..k} 1/(j-th composite), is > n.

Original entry on oeis.org

9, 44, 168, 587, 1940, 6192, 19285, 59010, 178122, 531923, 1574706, 4628338, 13521477, 39299115, 113712434, 327752962, 941457955, 2696114317, 7700146599, 21938239766
Offset: 1

Author

Labos Elemer, Aug 27 2002

Keywords

Examples

			1/4 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/14 + 1/15 + 1/16 = 1045/1008, but if 1/16 is not present, the sum is less than 1; 16 is the ninth composite number, so a(1) = 9.
		

Programs

Formula

a(n) = Min { k : Sum_{j=1..k} 1/A002808(j) > n }.
Limit_{n->oo} a(n+1)/a(n) = e. - Robert G. Wilson v, Aug 28 2002
a(n) = A065855(A076751(n)). - Amiram Eldar, Jul 17 2024

Extensions

Edited by Robert G. Wilson v, Aug 28 2002
More terms from Robert Gerbicz, Aug 30 2002
2 more terms from Robert G. Wilson v, Sep 03 2002
Edited by Jon E. Schoenfield, Sep 13 2023
a(18)-a(20) from Amiram Eldar, Jul 17 2024
Previous Showing 11-20 of 84 results. Next