cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 84 results. Next

A091463 a(n) is the smallest j such that 1/1 + 1/4 + 1/7 + ... + 1/j exceeds n.

Original entry on oeis.org

4, 52, 1060, 21301, 427873, 8594032, 172615738, 3467079760, 69638158519
Offset: 1

Views

Author

Robert G. Wilson v, Jan 12 2004

Keywords

Crossrefs

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 3]; Print[k]; k += 3, {n, 1, 7}]

Formula

The next term is approximately the previous term * e^3.

Extensions

Name edited by Jon E. Schoenfield, Dec 20 2019
a(8)-a(9) from Hugo Pfoertner, Dec 27 2019

A091464 a(n) is the smallest j such that 1/2 + 1/5 + 1/8 + ... + 1/j exceeds n.

Original entry on oeis.org

17, 323, 6506, 130664, 2624438, 52713275, 1058774426, 21266052797, 427140088670
Offset: 1

Views

Author

Robert G. Wilson v, Jan 12 2004

Keywords

Crossrefs

Programs

  • Mathematica
    s = 0; k = 2; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 3]; Print[k]; k += 3, {n, 1, 7}]

Formula

The next term is approximately the previous term * e^3.

Extensions

a(8)-a(9) from Hugo Pfoertner, Dec 26 2019

A101877 a(n) = k implies that there exists a set S of positive integers such that Sum_{ s_i in S } 1/s_i = n, max(S) = k and no set S' exists with the same sum and a smaller maximal element.

Original entry on oeis.org

1, 6, 24, 65, 184, 469, 1243, 3231
Offset: 1

Views

Author

Hugo van der Sanden, Jan 29 2005

Keywords

Comments

In other words, a(n) = min { max S | S subset of N*, Sum_{x in S} 1/x = n }.
8492 < a(9) <= 8507; 22788 < a(10) <= 22820; 60577 < a(11) <= 60639. - Hugo van der Sanden, Jan 20 2015
Little is known about the number of different sets S that achieve a(n). Paul Hanna asks if it is always true that a solution set S for n+1 must necessarily contain a solution set for n as a subset. This is true for small n, apparently, but seems to me unlikely to hold in general. - N. J. A. Sloane, Dec 31 2005
Martin and Shi show that it is not true for n = 5. They give a set that achieves a(6) without 136, while all sets that achieve a(5) include 136. - Matthieu Pluntz, Feb 20 2023
Does a(n+1) / a(n) converge? - David A. Corneth, Apr 08 2018
From Jon E. Schoenfield, Apr 20 2024: (Start)
Does log(a(n)) approach n? Using the known exact values and the bounds from Hugo van der Sanden gives
.
n log(a(n))
== ==========================
1 0
2 1.79175...
3 3.17805...
4 4.17438...
5 5.21493...
6 6.15060...
7 7.12528...
8 8.08054...
9 9.04782... +/- 0.00082...
10 10.03471... +/- 0.00067...
11 11.01219... +/- 0.00050...
(End)

Examples

			The set S = { 1, 2, 3, 6 } gives a sum 1/1 + 1/2 + 1/3 + 1/6 = 2; exhaustive search shows that no set with a smaller maximal element can sum to 2, therefore a(2) = 6.
a(1) = 1, S = { 1 }
a(2) = 6, S = { 1 2 3 6 }
a(3) = 24, S = { 1 2 3 4 5 6 8 9 10 15 18 20 24 }
a(4) = 65, S = { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22 24 26 27 28 30 33 35 36 40 42 45 48 52 54 56 60 63 65 }
a(5) = 184, using this set: { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 32 33 34 35 36 38 39 40 42 44 45 48 50 51 52 54 55 56 58 60 62 63 65 66 68 69 70 72 75 76 77 78 80 81 84 85 87 88 90 91 92 93 95 96 99 102 104 105 108 110 112 114 115 116 117 126 130 133 136 138 140 143 144 145 150 152 153 154 155 156 161 162 165 168 170 171 174 175 176 180 184 }
a(6) = 469, using the set: { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 60 61 62 63 64 65 66 67 68 69 70 72 74 75 76 77 78 80 81 82 84 85 86 87 88 90 91 92 93 94 95 96 98 99 100 102 104 105 106 108 110 111 112 114 115 116 117 119 120 121 122 123 124 126 128 129 130 132 133 134 135 136 138 140 141 143 144 145 147 148 150 152 153 154 155 156 159 160 161 162 164 165 168 170 171 174 175 176 177 180 182 183 184 185 186 187 188 189 190 192 195 196 198 200 201 203 204 205 207 208 209 210 212 215 216 217 220 221 222 224 225 228 230 231 232 234 238 240 242 245 246 247 248 250 252 253 255 258 259 260 261 264 266 268 270 272 273 275 276 280 282 285 286 287 288 290 294 295 297 299 300 301 304 305 306 310 312 315 319 320 322 323 324 325 328 329 330 336 340 341 344 345 348 350 351 352 354 357 360 363 364 368 370 372 375 376 377 378 380 384 385 387 390 396 400 402 405 406 407 408 413 414 416 418 424 425 429 430 432 434 435 440 442 444 448 451 455 456 460 462 465 468 469 }
		

Crossrefs

Cf. A002387.

Extensions

Entry revised by N. J. A. Sloane, Dec 31 2005
Example for a(6) = 469 corrected by Hugo van der Sanden, Jan 31 2008
a(7)-a(8) from Hugo van der Sanden, Jan 20 2015

A289183 a(n) is the greatest m such that 2*H(n) > H(m), where H(n) is the n-th harmonic number.

Original entry on oeis.org

3, 10, 21, 35, 53, 74, 99, 128, 160, 196, 235, 277, 324, 374, 427, 484, 545, 609, 676, 748, 822, 901, 983, 1068, 1157, 1250, 1346, 1446, 1549, 1656, 1766, 1880, 1998, 2119, 2244, 2372, 2504, 2639, 2778, 2921, 3067, 3216, 3369, 3526, 3686, 3850, 4018, 4189
Offset: 1

Views

Author

Joseph Wheat, Jun 27 2017

Keywords

Crossrefs

Programs

  • Mathematica
    s = HarmonicNumber@ Range[10^4]; Table[Position[s, k_ /; k < 2 HarmonicNumber@ n][[-1, 1]], {n, 48}] (* Michael De Vlieger, Jun 27 2017 *)
    (* The following program searches for such n that f(n) <> a(n) *)
    f[n_] := Floor[n^2*E^(EulerGamma + 1/n) - (1/2 + (1/6)*E^(EulerGamma))];
    harmonic[n_] := Log[n] + EulerGamma + 1/(2 n) - Sum[BernoulliB[2 k]/(2 k*n^(2 k)), {k, 1, 10}];
    Select[Range[100000], 2*harmonic[#] < harmonic[f[#]] &]
    (* Vaclav Kotesovec, Jul 17 2017 *)
  • PARI
    a(n) = {my(m=1); hn = sum(k=1, n, 1/k); hm = 1; until(hm > 2*hn, m++; hm+=1/m); m--;} \\ Michel Marcus, Jul 19 2017
    
  • Python
    from sympy import harmonic
    def a(n):
      hn2 = 2 * harmonic(n)
      m = n
      while harmonic(m) <= hn2: m += 1
      return m - 1
    print([a(n) for n in range(1, 49)]) # Michael S. Branicky, Mar 10 2021

Formula

From Jon E. Schoenfield, Jul 13 2017: (Start)
It seems that, for the vast majority of values of n > 1, f(n) = floor(n^2 * exp(gamma + 1/n) - C), where gamma is the Euler-Mascheroni constant (A001620) and C = 1/2 + (1/6)*exp(gamma) = 0.7968454029983663308727506838511965915282742..., is equal to a(n); f(n) = a(n) for all n in [2..10000] except n=66: f(66)=7876, but a(66)=7875. [Thanks to Vaclav Kotesovec for identifying the value of C.]
Is there any n > 66 at which f(n) and a(n) differ?
(End)
From Vaclav Kotesovec, Jul 17 2017: (Start)
f(39087) = 2721180603, but a(39087) = 2721180602;
f(517345) = 476697560917, but a(517345) = 476697560916;
f(2013005) = 7217245877275, but a(2013005) = 7217245877274;
No other such numbers below 10000000.
(End)
After 2013005, the only other numbers n < 4*10^9 at which f(n) and a(n) differ are 10240491 and 80968833. - Jon E. Schoenfield, Aug 05 2017

Extensions

More terms from Michael De Vlieger, Jun 27 2017

A054041 Sum of a(n) terms of 1/k^(1/3) first exceeds n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 15, 17, 20, 23, 25, 28, 32, 35, 38, 41, 45, 49, 52, 56, 60, 64, 68, 72, 76, 81, 85, 89, 94, 98, 103, 108, 113, 117, 122, 127, 132, 138, 143, 148, 153, 159, 164, 170, 175, 181, 187, 192, 198, 204, 210, 216, 222, 228, 234, 240, 247, 253, 259
Offset: 0

Views

Author

Asher Auel, Apr 13 2000

Keywords

Crossrefs

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[ s <= n, s = s + N[ 1/k^(1/3), 24 ]; k++ ]; Print[ k - 1 ], {n, 1, 75} ]

Extensions

Corrected and extended by Robert G. Wilson v, Aug 01 2000
Edited by N. J. A. Sloane, Jan 17 2009 at the suggestion of R. J. Mathar

A065071 Minimum number of identical bricks of length 1 which, when stacked without mortar in the naive way, form a stack of length >=n.

Original entry on oeis.org

1, 5, 32, 228, 1675, 12368, 91381, 675215, 4989192, 36865413, 272400601, 2012783316, 14872568832, 109894245430, 812014744423, 6000022499694, 44334502845081, 327590128640501, 2420581837980562, 17885814992891027
Offset: 1

Views

Author

John W. Layman, Nov 08 2001

Keywords

Comments

Note that one can do "better" in terms of projections if one groups the bricks asymmetrically into lozenges with holes. See the Ainsley and Drummond references. Ainsley considers only the case of four bricks, but achieves an overhang of (15 - 4*sqrt(2))/8, compared with 25/24 for the harmonic pile. - D. G. Rogers, Aug 31 2005
Lim_{n -> inf} a(n)/a(n-1) = exp(2). - Robert G. Wilson v, Jan 26 2017

Examples

			Obviously a(1)=1. If the center of gravity of one brick is placed at the end of a second brick, the length of the stack of 2 bricks is 1.5. If the c.g. of that stack is placed at the end of a third brick, the length of the stack is 1.75. Continuing, we get a stack of length 1.916666... for 4 bricks and a stack of length 2.0416666... for 5 bricks. Thus a(2)=5.
		

References

  • N. J. A. Sloane, Illustration for sequence M4299 (=A007340) in The Encyclopedia of Integer Sequences (with Simon Plouffe), Academic Press, 1995.

Crossrefs

Cf. harmonic numbers H(n) = A001008/A002805, A002387, A004080.

Programs

Formula

a(n) = A002387(2n) + 1 = A014537(n) + 1.

Extensions

More terms from Vladeta Jovovic, Nov 14 2001

A079527 a(n) = floor( exp(H_n)*log(H_n) ).

Original entry on oeis.org

0, 1, 3, 5, 8, 10, 12, 15, 17, 20, 22, 25, 27, 30, 33, 35, 38, 41, 43, 46, 49, 52, 55, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 160, 163, 166, 169, 172, 175, 178
Offset: 1

Views

Author

N. J. A. Sloane, Jan 22 2003

Keywords

Crossrefs

H_n = sum of harmonic series (see A002387).
Cf. A079526.

Programs

  • Magma
    [Floor(Exp(HarmonicNumber(n))*Log(HarmonicNumber(n))): n in [1..80]]; // G. C. Greubel, Jan 15 2019
    
  • Mathematica
    a[n_] := Exp[HarmonicNumber[n]] Log[HarmonicNumber[n]] // Floor;
    Array[a, 64] (* Jean-François Alcover, Oct 08 2018 *)
  • PARI
    {h(n) = sum(k=1, n, 1/k)};
    vector(80, n, floor( exp(h(n))*log(h(n))) ) \\ G. C. Greubel, Jan 15 2019
    
  • Sage
    [floor(exp(harmonic_number(n))*log(harmonic_number(n))) for n in (1..80)] # G. C. Greubel, Jan 15 2019

A118050 Numerators of coefficients in a series for the inverse of harmonic number H(x).

Original entry on oeis.org

1, -1, 3, -1525, 615881, -3058641, 38800188510523, -3213747182969063, 100462329712125, -43865443313064357090353257, 4543042335221166932765440567147, -103986681387361620043171941
Offset: 0

Views

Author

David W. Cantrell (DWCantrell(AT)sigmaxi.net), Apr 08 2006

Keywords

Examples

			With InvH(x) being the inverse of H(x), x > 0, an asymptotic series for InvH(x) + 1/2 is u - 1/(24u) + 3/(640u^3) - 1525/(580608u^5) +-... where u = e^(x - g) and g is Euler's gamma constant.
		

Crossrefs

Denominators given in A118051. See also A002387.

Programs

  • Mathematica
    n = 12; coeffs = InverseSeries[Exp[Series[HarmonicNumber[x - 1/2], {x, Infinity, 2n - 1}] - EulerGamma]][[3]]; Table[Numerator[coeffs[[2i - 1]]], {i, 1, n}]

A118051 Denominators of coefficients in a series for the inverse of harmonic number H(x).

Original entry on oeis.org

1, 24, 640, 580608, 199065600, 504627200, 2191186722816000, 44497945755648000, 255806104666112, 15953645581139831685120000, 188420950968830433165312000000, 401521614736326656000000
Offset: 0

Views

Author

David W. Cantrell (DWCantrell(AT)sigmaxi.net), Apr 08 2006

Keywords

Examples

			With InvH(x) being the inverse of H(x), x > 0, an asymptotic series for InvH(x) + 1/2 is u - 1/(24u) + 3/(640u^3) - 1525/(580608u^5) +-... where u = e^(x - g) and g is Euler's gamma constant.
		

Crossrefs

Numerators given in A118050. See also A002387.

Programs

  • Mathematica
    n = 12; coeffs = InverseSeries[Exp[Series[HarmonicNumber[x - 1/2], {x, Infinity, 2n - 1}] - EulerGamma]][[3]]; Table[Denominator[coeffs[[2i - 1]]], {i, 1, n}]

A157248 'Greedy' sequence formed by summing unit fractions until the sum is 1, and repeating using up the 'left over' fractions.

Original entry on oeis.org

1, 2, 3, 6, 4, 5, 7, 8, 9, 10, 15, 230, 57960, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1544, 8242614, 92401258430373, 36895712779713620978746324067
Offset: 1

Views

Author

Jeremy Gardiner, Feb 25 2009

Keywords

Comments

Subsequence of starting elements of each pass may be related to A002387 1,2,4,11,31,83,... - David W. Wilson

Examples

			1/2+1/3+1/6=1
		

References

  • H. Ibstedt, Computer Analysis of Number Sequences, American Research Press, 1998; Chapter VI.2 Integers represented as sums of terms of the harmonic series.

Crossrefs

Cf. A192881.

Programs

  • PARI
    {r=1;u=[];l=1;for(n=1,99,while(setsearch(u,l),l++);m=ceil(1/r);while(setsearch(u,m),m++);print1(m",");r-=1/m;r||r=1;u=setunion(u,Set(m)))} \\ M. F. Hasler
Previous Showing 31-40 of 84 results. Next