cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 69 results. Next

A016638 Decimal expansion of log(15).

Original entry on oeis.org

2, 7, 0, 8, 0, 5, 0, 2, 0, 1, 1, 0, 2, 2, 1, 0, 0, 6, 5, 9, 9, 6, 0, 0, 4, 5, 7, 0, 1, 4, 8, 7, 1, 3, 3, 4, 4, 1, 7, 3, 0, 9, 1, 9, 1, 2, 0, 9, 1, 2, 6, 7, 1, 7, 3, 6, 4, 7, 3, 4, 2, 2, 2, 5, 1, 1, 1, 6, 7, 3, 2, 8, 0, 9, 2, 6, 2, 6, 6, 7, 3, 1, 5, 0, 3, 7, 4, 9, 6, 3, 2, 9, 0, 6, 9, 1, 1, 6, 9, 9, 5, 8, 7, 9, 3
Offset: 1

Views

Author

Keywords

Examples

			2.708050201102210065996004570148713344173091912091267173647342225111673....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016443 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[15], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(15); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016638.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009

Formula

Equals A002391 + A016628. - R. J. Mathar, Jun 10 2024

Extensions

Final digits of sequence corrected using the b-file. - N. J. A. Sloane, Aug 30 2009

A016641 Decimal expansion of log(18).

Original entry on oeis.org

2, 8, 9, 0, 3, 7, 1, 7, 5, 7, 8, 9, 6, 1, 6, 4, 6, 9, 2, 2, 0, 7, 7, 2, 2, 5, 9, 5, 3, 0, 3, 2, 2, 7, 9, 7, 7, 3, 7, 0, 4, 8, 1, 2, 5, 0, 0, 0, 5, 7, 5, 4, 1, 5, 7, 5, 9, 0, 0, 6, 8, 6, 7, 6, 7, 6, 8, 3, 8, 2, 2, 0, 8, 4, 0, 6, 9, 1, 2, 6, 4, 9, 3, 5, 3, 0, 9, 4, 8, 3, 6, 6, 2, 3, 8, 8, 2, 8, 6
Offset: 1

Views

Author

Keywords

Examples

			2.890371757896164692207722595303227977370481250005754157590068676768382....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016446 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[18], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(18); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016641.txt", n, " ", d)); \\ Harry J. Smith, May 17 2009

Formula

Equals A002162 + 2*A002391. - R. J. Mathar, Jun 10 2024

A016647 Decimal expansion of log(24).

Original entry on oeis.org

3, 1, 7, 8, 0, 5, 3, 8, 3, 0, 3, 4, 7, 9, 4, 5, 6, 1, 9, 6, 4, 6, 9, 4, 1, 6, 0, 1, 2, 9, 7, 0, 5, 5, 4, 0, 8, 8, 7, 3, 9, 9, 0, 9, 6, 0, 9, 0, 3, 5, 1, 5, 2, 1, 4, 0, 9, 6, 7, 3, 4, 3, 6, 2, 1, 1, 7, 6, 7, 5, 1, 5, 9, 1, 2, 7, 6, 9, 3, 1, 1, 3, 6, 9, 1, 2, 0, 5, 7, 3, 5, 8, 0, 2, 9, 8, 8, 1, 5
Offset: 1

Views

Author

Keywords

Examples

			3.178053830347945619646941601297055408873990960903515214096734362117675...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016452 Continued fraction.

Programs

  • Mathematica
    RealDigits[Log[24],10,120][[1]] (* Harvey P. Dale, Oct 04 2021 *)
  • PARI
    default(realprecision, 20080); x=log(24); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016647.txt", n, " ", d)); \\ Harry J. Smith, May 19 2009

Formula

Equals 3*A002162 +A002391. - R. J. Mathar, Jul 22 2025

A059548 Beatty sequence for 1 + log(3).

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 128, 130, 132, 134
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Comments

Different from A064720, although the sequences agree for about 1400 terms. - Joshua Zucker, Apr 25 2007

Crossrefs

Beatty complement is A059547.
Cf. A002391.

Programs

  • Mathematica
    Floor[Range[100]*(1 + Log[3])] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=1 + log(3); for (n = 1, 2000, write("b059548.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*(1 + A002391)). - Paolo Xausa, Jul 05 2024

A156057 Decimal expansion of log(3)/2.

Original entry on oeis.org

5, 4, 9, 3, 0, 6, 1, 4, 4, 3, 3, 4, 0, 5, 4, 8, 4, 5, 6, 9, 7, 6, 2, 2, 6, 1, 8, 4, 6, 1, 2, 6, 2, 8, 5, 2, 3, 2, 3, 7, 4, 5, 2, 7, 8, 9, 1, 1, 3, 7, 4, 7, 2, 5, 8, 6, 7, 3, 4, 7, 1, 6, 6, 8, 1, 8, 7, 4, 7, 1, 4, 6, 6, 0, 9, 3, 0, 4, 4, 8, 3, 4, 3, 6, 8, 0, 7, 8, 7, 7, 4, 0, 6, 8, 6, 6, 0, 4, 4
Offset: 0

Views

Author

Jonathan Vos Post, Feb 03 2009

Keywords

Comments

Culler & Shalen show a bound of log(3)/2 on maximal injectivity under certain circumstances, see links.
Equals arctanh(1/2), the rapidity of an object traveling at half the speed of light. - Sean Stroud, May 13 2019

Examples

			0.54930614433405484569762261846...
		

Crossrefs

Cf. A000045, A002391 (decimal expansion of natural logarithm of 3).

Programs

Formula

Equals arctanh(1/2) = arccoth(2) = Integral_{x>2} 1/(x^2-1) dx. - Jean-François Alcover, Jun 04 2013
From Amiram Eldar, Aug 05 2020: (Start)
Equals Sum_{k>=0} 1/((2*k+1) * 2^(2*k+1)).
Equals Integral_{x=0..oo} 1/(exp(x) + 2) dx. (End)
Equals Sum_{k>=1} arctanh(1/Fibonacci(2*k+2)) (Melham and Shannon, 1995). - Amiram Eldar, Jan 15 2022
log(3)/2 = Sum_{n >= 1} 1/(n*P(n, 2)*P(n-1, 2)), where P(n, x) denotes the n-th Legendre polynomial. The first 10 terms of the series gives the approximation log(3)/2 = 0.54930614433(10...), correct to 11 decimal places. - Peter Bala, Mar 16 2024

Extensions

All digits were wrong. Corrected by N. J. A. Sloane, Feb 05 2009
Offset 0 from Michel Marcus, May 13 2019

A175478 Decimal expansion of log(3)^2.

Original entry on oeis.org

1, 2, 0, 6, 9, 4, 8, 9, 6, 0, 8, 1, 2, 5, 8, 1, 9, 7, 7, 8, 4, 3, 7, 7, 9, 1, 2, 3, 8, 4, 9, 3, 6, 5, 9, 1, 3, 6, 1, 8, 4, 6, 3, 3, 4, 6, 6, 2, 9, 2, 2, 1, 9, 8, 4, 8, 1, 6, 7, 2, 6, 8, 4, 0, 0, 5, 8, 2, 1, 5, 5, 1, 4, 8, 0, 7, 9, 8, 5, 2, 5, 4, 4, 5, 8, 5, 4, 4, 3, 0, 1, 7, 7, 1, 4, 0, 9, 3, 3, 3, 4, 2, 2, 8, 3
Offset: 1

Views

Author

R. J. Mathar, May 25 2010

Keywords

Examples

			1.2069489608125819778437...
		

Crossrefs

Programs

Formula

Equals A002391^2.
Equals Sum_{n >= 0} (-1)^n*(4/3)^(n+1)/((n+1)^2*binomial(2*n+1,n)). See my entry in A002544 dated Apr 18 2017. - Peter Bala, Jan 30 2023

A194562 Decimal expansion of log(log(3)).

Original entry on oeis.org

0, 9, 4, 0, 4, 7, 8, 2, 7, 6, 1, 6, 6, 9, 9, 0, 1, 6, 1, 7, 4, 3, 3, 4, 3, 3, 2, 0, 8, 4, 4, 9, 3, 9, 9, 2, 7, 8, 5, 3, 3, 8, 0, 2, 9, 6, 1, 8, 4, 1, 8, 4, 8, 8, 0, 1, 4, 2, 1, 9, 3, 5, 4, 5, 6, 0, 1, 7, 5, 3, 4, 5, 6, 4, 0
Offset: 0

Views

Author

Kausthub Gudipati, Sep 20 2011

Keywords

Examples

			0.09404782761669901617433433208449399278533802961841...
		

Crossrefs

Programs

Formula

Equals log(A002391).

A254381 a(n) = 3^n*(2*n + 1)!/n!.

Original entry on oeis.org

1, 18, 540, 22680, 1224720, 80831520, 6304858560, 567437270400, 57878601580800, 6598160580211200, 831368233106611200, 114728816168712345600, 17209322425306851840000, 2787910232899709998080000, 485096380524549539665920000, 90227926777566214377861120000
Offset: 0

Views

Author

Peter Bala, Feb 04 2015

Keywords

Crossrefs

Programs

  • Maple
    seq(3^n*(2*n + 1)!/n!, n = 0..13);
  • Mathematica
    Table[3^n(2n + 1)!/n!, {n, 0, 19}] (* Alonso del Arte, Feb 04 2015 *)

Formula

E.g.f.: 1/(1 - 12*x)^(3/2) = 1 + 18*x + 540*x^2/2! + 22680*x^3/3! + ....
Recurrence equation: a(n) = 6*(2*n + 1)*a(n-1) with a(0) = 1.
2nd order recurrence equation: a(n) = 8*(n + 1)*a(n-1) + 12*(2*n - 1)^2*a(n-2) with a(0) = 1, a(1) = 18.
Define a sequence b(n) := a(n)*sum {k = 0..n} (-1)^k/((2*k + 1)*3^k) beginning [1, 16, 492, 20544, 1111056, 73299456, 5718022848, ...]. It is not difficult to check that b(n) also satisfies the previous 2nd order recurrence equation (and so is an integer sequence). Using this observation we obtain the continued fraction expansion Pi/(2*sqrt(3)) = Sum {k >= 0} (-1)^k/( (2*k + 1)*3^k ) = 1 - 2/(18 + 12*3^2/(24 + 12*5^2/(32 + ... + 12*(2*n - 1)^2/((8*n + 8) + ... )))). Cf. A254619 and A254620.

A293383 Decimal expansion of Sum_{n>=1} (2^(n+1) - 3)^n / (n * 3^n * 2^(n^2)).

Original entry on oeis.org

3, 9, 2, 7, 7, 1, 5, 7, 5, 5, 5, 5, 0, 6, 7, 5, 1, 1, 8, 5, 9, 1, 1, 1, 8, 7, 7, 2, 6, 1, 2, 2, 8, 0, 9, 1, 3, 4, 2, 7, 2, 3, 4, 4, 9, 0, 4, 2, 2, 6, 3, 4, 8, 6, 2, 0, 2, 3, 8, 8, 3, 4, 3, 8, 7, 3, 1, 7, 5, 1, 9, 7, 9, 9, 7, 0, 9, 7, 5, 9, 1, 8, 4, 9, 7, 0, 7, 2, 1, 8, 1, 6, 3, 4, 7, 6, 2, 4, 5, 5, 1, 3, 2, 1, 8, 9, 6, 7, 0, 1, 3, 5, 2, 4, 8, 6, 2, 6, 6, 3
Offset: 0

Views

Author

Paul D. Hanna, Oct 13 2017

Keywords

Comments

This constant plus A293384 equals log(3), due to the identity:
Sum_{n=-oo..+oo, n<>0} (x - y^n)^n / n = -log(1-x), here x = 2/3, y = 1/2.

Examples

			Constant t = 0.3927715755550675118591118772612280913427234490422634862023883438....
such that
t = (2^2 - 3)/(1*3*2) + (2^3 - 3)^2/(2*3^2*2^4) + (2^4 - 3)^3/(3*3^3*2^9) + (2^5 - 3)^4/(4*3^4*2^16) + (2^6 - 3)^5/(5*3^5*2^25) + (2^7 - 3)^6/(6*3^6*2^36) + (2^8 - 3)^7/(7*3^7*2^49) + (2^9 - 3)^8/(8*3^8*2^64) + (2^10 - 3)^9/(9*3^9*2^81) +...+ (2^(n+1) - 3)^n/(n * 3^n * 2^(n^2)) +...
More explicitly,
t = 1/(1*3*2) + 5^2/(2*9*2^4) + 13^3/(3*27*2^9) + 29^4/(4*81*2^16) + 61^5/(5*243*2^25) + 125^6/(6*729*2^36) + 253^7/(7*2187*2^49) + 509^8/(8*6561*2^64) + 1021^9/(9*19683*2^81) + 2045^10/(10*59049*2^100) + 4093^11/(11*177147*2^121) + 8189^12/(12*531441*2^144) +...
Also,
log(3) - t = 3/(1*2*(3-1)) - 3^2/(2*4*(3*2-1)^2) + 3^3/(3*8*(3*2^2-1)^3) - 3^4/(4*16*(3*2^3-1)^4) + 3^5/(5*32*(3*2^4-1)^5) - 3^6/(6*64*(3*2^5-1)^6) + 3^7/(7*128*(3*2^6-1)^7) +...+ -(-1)^n*3^n/(n*2^n*(3*2^(n-1) - 1)^n) +...
		

Crossrefs

Programs

  • PARI
    {t = suminf(n=1, 1.*(2^(n+1) - 3)^n / (n * 3^n * 2^(n^2)) )}
    for(n=1,120, print1(floor(10^n*t)%10,", "))

Formula

Constant: Sum_{n>=1} (2^(n+1) - 3)^n / (n * 3^n * 2^(n^2)).
Constant: log(3) - Sum_{n>=1} -(-1)^n * 3^n / (n * 2^n * (3*2^(n-1) - 1)^n).

A293384 Decimal expansion of Sum_{n>=1} -(-1)^n * 3^n / (n * 2^n * (3*2^(n-1) - 1)^n).

Original entry on oeis.org

7, 0, 5, 8, 4, 0, 7, 1, 3, 1, 1, 3, 0, 4, 2, 1, 7, 9, 5, 3, 6, 1, 3, 3, 3, 5, 9, 6, 6, 1, 2, 9, 7, 6, 1, 3, 3, 0, 4, 7, 6, 7, 1, 0, 8, 7, 8, 0, 4, 8, 5, 9, 6, 5, 5, 3, 2, 3, 0, 5, 9, 8, 9, 7, 6, 4, 3, 1, 9, 0, 9, 5, 2, 2, 1, 5, 1, 1, 3, 7, 5, 0, 2, 3, 9, 0, 8, 5, 3, 6, 6, 5, 0, 2, 5, 5, 8, 4, 3, 2, 7, 4, 7, 5, 1, 0, 6, 2, 0, 5, 2, 4, 3, 3, 0, 0, 3, 0, 7, 8
Offset: 0

Views

Author

Paul D. Hanna, Oct 13 2017

Keywords

Comments

This constant plus A293383 equals log(3), due to the identity:
Sum_{n=-oo..+oo, n<>0} (x - y^n)^n / n = -log(1-x), here x = 2/3, y = 1/2.

Examples

			Constant t = 0.7058407131130421795361333596612976133047671087804859655323059...
such that
t = 3/(1*2*(3-1)) - 3^2/(2*4*(3*2-1)^2) + 3^3/(3*8*(3*2^2-1)^3) - 3^4/(4*16*(3*2^3-1)^4) + 3^5/(5*32*(3*2^4-1)^5) - 3^6/(6*64*(3*2^5-1)^6) + 3^7/(7*128*(3*2^6-1)^7) - 3^8/(8*256*(3*2^7-1)^8) +...+ -(-1)^n*3^n/(n*2^n*(3*2^(n-1) - 1)^n) +...
More explicitly,
t = 3/(1*2*2) - 9/(2*4*5^2) + 27/(3*8*11^3) - 81/(4*16*23^4) + 243/(5*32*47^5) - 729/(6*64*95^6) + 2187/(7*128*191^7) - 6561/(8*256*383^8) + 19683/(9*512*767^9) - 59049/(10*1024*1535^10) + 177147/(11*2048*3071^11) - 531441/(12*4096*6143^12) +...
Also,
log(3) - t = (2^2 - 3)/(1*3*2) + (2^3 - 3)^2/(2*3^2*2^4) + (2^4 - 3)^3/(3*3^3*2^9) + (2^5 - 3)^4/(4*3^4*2^16) + (2^6 - 3)^5/(5*3^5*2^25) + (2^7 - 3)^6/(6*3^6*2^36) + (2^8 - 3)^7/(7*3^7*2^49) + (2^9 - 3)^8/(8*3^8*2^64) + (2^10 - 3)^9/(9*3^9*2^81) +...+ (2^(n+1) - 3)^n/(n * 3^n * 2^(n^2)) +...
		

Crossrefs

Programs

  • PARI
    {t = suminf(n=1, -1.*(-1)^n * 3^n / (n * 2^n * (3*2^(n-1) - 1)^n) )}
    for(n=1,120, print1(floor(10^n*t)%10,", "))

Formula

Constant: Sum_{n>=1} -(-1)^n * 3^n / (n * 2^n * (3*2^(n-1) - 1)^n).
Constant: log(3) - Sum_{n>=1} (2^(n+1) - 3)^n / (n * 3^n * 2^(n^2)).
Previous Showing 31-40 of 69 results. Next