cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 69 results. Next

A386734 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} {1/(x+y+z)} dx dy dz, where {} denotes fractional part.

Original entry on oeis.org

1, 8, 3, 8, 4, 3, 7, 6, 4, 0, 6, 7, 0, 2, 4, 6, 1, 2, 0, 7, 5, 3, 4, 1, 7, 5, 6, 6, 4, 6, 5, 8, 1, 2, 6, 7, 0, 7, 8, 2, 1, 3, 5, 5, 7, 8, 7, 0, 5, 9, 1, 5, 6, 7, 1, 8, 5, 9, 0, 8, 6, 6, 6, 7, 3, 7, 4, 4, 3, 4, 8, 4, 7, 7, 2, 4, 1, 5, 5, 1, 2, 2, 0, 2, 8, 6, 2, 9, 9, 7, 8, 7, 8, 6, 1, 4, 6, 4, 5, 2, 2, 0, 7, 5, 6
Offset: 0

Views

Author

Amiram Eldar, Aug 01 2025

Keywords

Examples

			0.18384376406702461207534175664658126707821355787059...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[9*Log[3]/2 - 6*Log[2] - Zeta[3]/2, 10, 120][[1]]
  • PARI
    9*log(3)/2 - 6*log(2) - zeta(3)/2

Formula

Equals 9*log(3)/2 - 6*log(2) - zeta(3)/2.

A016653 Decimal expansion of log(30).

Original entry on oeis.org

3, 4, 0, 1, 1, 9, 7, 3, 8, 1, 6, 6, 2, 1, 5, 5, 3, 7, 5, 4, 1, 3, 2, 3, 6, 6, 9, 1, 6, 0, 6, 8, 8, 9, 9, 1, 2, 2, 4, 8, 5, 9, 2, 0, 4, 6, 4, 5, 1, 5, 2, 2, 4, 2, 7, 7, 6, 8, 0, 2, 2, 2, 3, 4, 6, 0, 5, 0, 6, 6, 9, 0, 2, 8, 9, 5, 9, 6, 1, 4, 4, 7, 1, 0, 9, 6, 1, 2, 9, 5, 9, 9, 0, 3, 3, 3, 0, 3, 8
Offset: 1

Views

Author

Keywords

Examples

			3.401197381662155375413236691606889912248592046451522427768022234605066....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016458 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[30], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(30); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016653.txt", n, " ", d)); \\ Harry J. Smith, May 20 2009

Formula

Equals A002391 + A002392. - R. J. Mathar, Jul 22 2025

A016662 Decimal expansion of log(39).

Original entry on oeis.org

3, 6, 6, 3, 5, 6, 1, 6, 4, 6, 1, 2, 9, 6, 4, 6, 4, 2, 7, 4, 4, 8, 7, 3, 2, 6, 7, 8, 4, 8, 7, 8, 4, 4, 3, 0, 9, 4, 5, 2, 7, 5, 8, 5, 0, 2, 5, 8, 2, 9, 5, 6, 5, 6, 8, 1, 5, 3, 7, 3, 9, 8, 4, 4, 3, 0, 0, 9, 5, 8, 9, 6, 0, 5, 4, 3, 0, 1, 9, 1, 4, 6, 2, 7, 3, 1, 9, 0, 4, 1, 8, 2, 5, 4, 2, 2, 1, 5, 7
Offset: 1

Views

Author

Keywords

Examples

			3.663561646129646427448732678487844309452758502582956568153739844300958....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016467 (continued fraction).

Programs

  • Maple
    Digits:=100: evalf(log(39)); # Wesley Ivan Hurt, Jan 27 2017
  • Mathematica
    RealDigits[Log[39], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(39); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016662.txt", n, " ", d)); \\ Harry J. Smith, May 21 2009

Formula

Equals A002391 + A016636. - Michel Marcus, Jan 27 2017

A016668 Decimal expansion of log(45).

Original entry on oeis.org

3, 8, 0, 6, 6, 6, 2, 4, 8, 9, 7, 7, 0, 3, 1, 9, 7, 5, 7, 3, 9, 1, 2, 4, 9, 8, 0, 7, 0, 7, 1, 2, 3, 9, 0, 4, 8, 8, 2, 0, 5, 8, 2, 4, 6, 9, 9, 1, 4, 0, 1, 6, 6, 2, 5, 3, 8, 2, 0, 3, 6, 5, 5, 8, 7, 4, 9, 1, 6, 7, 5, 7, 4, 1, 4, 4, 8, 7, 5, 6, 9, 8, 3, 7, 7, 3, 6, 5, 3, 8, 7, 7, 2, 0, 6, 4, 3, 7, 8
Offset: 1

Views

Author

Keywords

Examples

			3.806662489770319757391249807071239048820582469914016625382036558749167....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016473 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[45], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(45); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016668.txt", n, " ", d)); \\ Harry J. Smith, May 21 2009

Formula

Equals 2*A002391 + A016628. - R. J. Mathar, Jun 07 2024

A016671 Decimal expansion of log(48).

Original entry on oeis.org

3, 8, 7, 1, 2, 0, 1, 0, 1, 0, 9, 0, 7, 8, 9, 0, 9, 2, 9, 0, 6, 4, 1, 7, 3, 7, 2, 2, 7, 5, 5, 2, 3, 1, 9, 7, 6, 9, 4, 9, 4, 9, 1, 0, 9, 5, 2, 6, 3, 7, 7, 0, 4, 6, 8, 2, 1, 7, 4, 1, 4, 3, 7, 1, 6, 1, 1, 0, 6, 8, 7, 8, 1, 0, 9, 7, 3, 8, 7, 8, 2, 9, 2, 9, 7, 0, 6, 9, 0, 6, 2, 7, 9, 9, 4, 0, 6, 8, 3
Offset: 1

Views

Author

Keywords

Examples

			3.871201010907890929064173722755231976949491095263770468217414371611068....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016476 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[48], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(48); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016671.txt", n, " ", d)); \\ Harry J. Smith, May 21 2009

Formula

Equals 4*A002162 + A002391. - R. J. Mathar, Jun 07 2024

A016674 Decimal expansion of log(51).

Original entry on oeis.org

3, 9, 3, 1, 8, 2, 5, 6, 3, 2, 7, 2, 4, 3, 2, 5, 7, 7, 1, 6, 4, 4, 7, 7, 9, 8, 5, 4, 7, 9, 5, 6, 5, 2, 2, 4, 0, 2, 3, 5, 6, 9, 3, 5, 7, 0, 4, 0, 8, 4, 9, 4, 2, 3, 9, 0, 3, 1, 9, 3, 2, 0, 7, 1, 5, 1, 9, 7, 8, 6, 8, 6, 9, 0, 1, 9, 5, 4, 0, 2, 4, 7, 7, 8, 5, 7, 1, 0, 6, 2, 2, 8, 5, 1, 2, 3, 5, 0, 3
Offset: 1

Views

Author

Keywords

Examples

			3.931825632724325771644779854795652240235693570408494239031932071519786....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016479 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[51],10,120][[1]] (* Harvey P. Dale, Sep 30 2012 *)
  • PARI
    default(realprecision, 20080); x=log(51); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016674.txt", n, " ", d)); \\ Harry J. Smith, May 21 2009

Formula

Equals A002391 + A016640. - R. J. Mathar, Jun 07 2024

A016677 Decimal expansion of log(54).

Original entry on oeis.org

3, 9, 8, 8, 9, 8, 4, 0, 4, 6, 5, 6, 4, 2, 7, 4, 3, 8, 3, 6, 0, 2, 9, 6, 7, 8, 3, 2, 2, 2, 5, 7, 5, 3, 6, 8, 2, 0, 1, 7, 9, 7, 1, 8, 0, 7, 8, 2, 8, 5, 0, 3, 6, 0, 9, 3, 2, 4, 7, 6, 3, 0, 1, 0, 4, 0, 5, 8, 7, 6, 5, 0, 1, 6, 2, 5, 5, 2, 1, 6, 1, 6, 2, 2, 6, 7, 1, 0, 5, 9, 1, 4, 3, 7, 6, 1, 4, 9, 5
Offset: 1

Views

Author

Keywords

Examples

			3.988984046564274383602967832225753682017971807828503609324763010405876....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016482 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[54], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(54); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016677.txt", n, " ", d)); \\ Harry J. Smith, May 22 2009

Formula

Equals A002162 +3*A002391. - R. J. Mathar, Jun 07 2024

A016680 Decimal expansion of log(57).

Original entry on oeis.org

4, 0, 4, 3, 0, 5, 1, 2, 6, 7, 8, 3, 4, 5, 5, 0, 1, 5, 1, 4, 0, 4, 2, 7, 2, 6, 6, 8, 8, 1, 0, 3, 7, 9, 2, 4, 1, 8, 8, 4, 8, 6, 9, 8, 1, 9, 1, 2, 1, 8, 7, 8, 2, 7, 0, 2, 7, 2, 6, 5, 4, 5, 7, 0, 0, 4, 6, 7, 8, 6, 9, 9, 5, 2, 8, 2, 8, 0, 6, 2, 5, 5, 5, 8, 7, 7, 7, 4, 1, 3, 8, 6, 2, 9, 4, 7, 1, 9, 8
Offset: 1

Views

Author

Keywords

Examples

			4.04305126783455015140427266881037924188486981912187827027265457004....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016485 (continued fraction).
Equals A002391 + A016642.

Programs

  • Maple
    evalf(log(57), 100); # Wesley Ivan Hurt, Jan 28 2017
  • Mathematica
    RealDigits[Log[57], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(57); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016680.txt", n, " ", d)); \\ Harry J. Smith, May 22 2009

Formula

Equals A002391 + A016642. - R. J. Mathar, Jul 22 2025

A016683 Decimal expansion of log(60).

Original entry on oeis.org

4, 0, 9, 4, 3, 4, 4, 5, 6, 2, 2, 2, 2, 1, 0, 0, 6, 8, 4, 8, 3, 0, 4, 6, 8, 8, 1, 3, 0, 6, 5, 0, 6, 6, 4, 8, 0, 3, 2, 4, 0, 9, 2, 1, 8, 0, 8, 1, 1, 7, 7, 7, 6, 8, 1, 8, 8, 8, 7, 0, 2, 2, 4, 4, 0, 9, 8, 4, 6, 0, 5, 2, 4, 8, 6, 5, 6, 5, 6, 1, 6, 2, 7, 1, 5, 4, 7, 6, 2, 8, 6, 8, 9, 9, 7, 4, 9, 0, 7
Offset: 1

Views

Author

Keywords

Examples

			4.094344562222100684830468813065066480324092180811777681888702244098460....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016488 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[60], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(60); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016683.txt", n, " ", d)); \\ Harry J. Smith, May 22 2009

Formula

Equals 2*A002162+A002391+A016628. - R. J. Mathar, Jul 22 2025

A121935 Decimal expansion of 1/log(3).

Original entry on oeis.org

9, 1, 0, 2, 3, 9, 2, 2, 6, 6, 2, 6, 8, 3, 7, 3, 9, 3, 6, 1, 4, 2, 4, 0, 1, 6, 5, 7, 3, 6, 1, 0, 7, 0, 0, 0, 6, 1, 2, 6, 3, 6, 0, 5, 7, 2, 5, 5, 2, 1, 1, 7, 4, 4, 7, 2, 6, 3, 0, 2, 0, 6, 3, 2, 9, 5, 2, 8, 1, 0, 8, 3, 1, 9, 3, 7, 9, 3, 7, 4, 6, 6, 4, 7, 2, 7, 1, 7, 8, 0, 8, 3, 8, 0, 8, 7, 1, 4, 8, 2, 8, 9, 7, 0, 1
Offset: 0

Views

Author

Joost de Winter, Sep 03 2006

Keywords

Examples

			0.9102392266268373936142401657361...
		

Crossrefs

Cf. A002391 (log(3)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 1/Log(3); // G. C. Greubel, Oct 07 2019
    
  • Mathematica
    RealDigits[1/Log[3], 10, 105][[1]] (* Alonso del Arte, Dec 01 2012 *)
  • PARI
    d=105;default(realprecision,d+1);print(k=1/log(3));k=10*k;for(c=0,d,z=floor(k);print1(z,",");k=10*(k-z)) \\ Klaus Brockhaus, Sep 06 2006
    
  • Sage
    numerical_approx(1/log(3), digits=100) # G. C. Greubel, Oct 07 2019

Formula

Equals 1/log(3).
Equals (1/2) * Product_{k>=1} ((1 + 3^(1/2^k))/2). - Amiram Eldar, Jun 04 2023

Extensions

More terms from Klaus Brockhaus, Sep 06 2006
Previous Showing 41-50 of 69 results. Next