cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 93 results. Next

A143690 a(n) = A007318 * [1, 6, 14, 9, 0, 0, 0, ...].

Original entry on oeis.org

1, 7, 27, 70, 145, 261, 427, 652, 945, 1315, 1771, 2322, 2977, 3745, 4635, 5656, 6817, 8127, 9595, 11230, 13041, 15037, 17227, 19620, 22225, 25051, 28107, 31402, 34945, 38745, 42811, 47152, 51777, 56695, 61915, 67446, 73297, 79477, 85995, 92860, 100081, 107667
Offset: 0

Views

Author

Gary W. Adamson, Aug 29 2008

Keywords

Comments

Binomial transform of [1, 6, 14, 9, 0, 0, 0,...].
Row sums of triangle A033292.

Examples

			a(3) = 70 = (1, 3, 3, 1) dot (1, 6, 14, 9) = (1 + 18 + 42 + 9). a(3) = 70 = sum of row 3 terms of triangle A033292: (13 + 16 + 19, + 22).
		

Crossrefs

Cf. A226449. - Bruno Berselli, Jun 09 2013

Programs

  • Mathematica
    Table[(n+1)*(3*n^2+2*n+2)/2, {n,0,50}] (* G. C. Greubel, May 30 2021 *)
  • Sage
    [(n+1)*(3*n^2+2*n+2)/2 for n in (0..50)] # G. C. Greubel, May 30 2021

Formula

From R. J. Mathar, Aug 29 2008: (Start)
G.f.: (1 +3*x +5*x^2)/(1-x)^4.
a(n) = A002412(n+1) + 5*A000292(n-1). (End)
a(n) = A000326(n+1) + (n+1)*A000326(n). - Bruno Berselli, Jun 07 2013
From G. C. Greubel, May 30 2021: (Start)
a(n) = (n+1)*(3*n^2 +2*n +2)/2.
E.g.f.: (1/2)*(2 +12*x +14*x^2 +3*x^3)*exp(x). (End)

Extensions

Extended beyond a(14) by R. J. Mathar, Aug 29 2008

A266677 Alternating sum of hexagonal pyramidal numbers.

Original entry on oeis.org

0, -1, 6, -16, 34, -61, 100, -152, 220, -305, 410, -536, 686, -861, 1064, -1296, 1560, -1857, 2190, -2560, 2970, -3421, 3916, -4456, 5044, -5681, 6370, -7112, 7910, -8765, 9680, -10656, 11696, -12801, 13974, -15216, 16530, -17917, 19380, -20920, 22540
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2016

Keywords

Comments

More generally, the ordinary generating function for the alternating sum of k-gonal pyramidal numbers is x*(1 + (3 - k)*x)/((x - 1)*(x + 1)^4).

Crossrefs

Programs

  • Mathematica
    Table[((-1)^n (2 n (n + 2) (4 n + 1) - 3) + 3)/24, {n, 0, 40}]
    LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -1, 6, -16, 34}, 40]
  • PARI
    concat(0, Vec(x*(1 - 3*x)/((x - 1)*(x + 1)^4) + O(x^50))) \\ Michel Marcus, Feb 02 2016

Formula

G.f.: x*(1 - 3*x)/((x - 1)*(x + 1)^4).
a(n) = ((-1)^n*(2*n*(n + 2)*(4*n + 1) - 3) + 3)/24.
a(n) = Sum_{k = 0..n} (-1)^k*A002412(k).

A316989 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3).

Original entry on oeis.org

0, 1, 3, 3, 1, 0, 7, 14, 9, 2, 0, 13, 37, 43, 26, 8, 1, 0, 19, 72, 129, 141, 98, 42, 10, 1, 0, 25, 119, 291, 463, 504, 378, 192, 63, 12, 1, 0, 31, 178, 553, 1156, 1716, 1848, 1452, 825, 330, 88, 14, 1, 0, 37, 249, 939, 2432, 4576, 6435, 6864, 5577, 3432, 1573
Offset: 0

Views

Author

Keywords

Comments

The triangle is related to the Kauffman bracket polynomial evaluated at the shadow diagram of the two-bridge knot with Conway's notation C(2n,3).

Examples

			The triangle T(n,k) begins:
n\k| 0   1    2    3     4     5     9     7     8     9    10   11   12  13 14
-------------------------------------------------------------------------------
0  | 0   1    3    3     1
1  | 0   7   14    9     2
2  | 0  13   37   43    26     8     1
3  | 0  19   72  129   141    98    42    10     1
4  | 0  25  119  291   463   504   378   192    63    12     1
5  | 0  31  178  553  1156  1716  1848  1452   825   330    88   14    1
6  | 0  37  249  939  2432  4576  6435  6864  5577  3432  1573  520  117  16  1
...
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if k = 1 then 6*n + 1 else binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) end if end proc:
    for n from 0 to 12 do seq(T(n, k), k = 0 .. max(4, 2*(n + 1))) od;
  • Mathematica
    row[n_] := CoefficientList[(x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3), x];
    Array[row, 12, 0] // Flatten
  • Maxima
    T(n, k) := binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) - kron_delta(1, k)$
    for n:0 thru 12 do print(makelist(T(n, k), k, 0, max(4, 2*(n + 1))));

Formula

T(n,1) = A016921(n) and T(n,k) = C(2*n+3,k+1) + (C(2*n+1,k)*(2*k - 2*n) + C(4,k)*(2*k - 3))/(k + 1) for k > 1.
T(n,2) = A173247(2*n+1) = A300401(2*n,3).
T(n,3) = 2*A099721(n) + 3.
T(n,4) = A244730(n) - A002412(n) + 1.
T(n,k) = A093560(2*n,k) for n > 2 and k > 4.
G.f.: (x^2 + 4*x + 3)/(1 - y*(x + 1)^2) + (x^4 + 3*x^3 + 2*x^2 - 3*x - 3)/(1 - y).

A319185 Numbers that are sums of consecutive hexagonal numbers (A000384).

Original entry on oeis.org

0, 1, 6, 7, 15, 21, 22, 28, 43, 45, 49, 50, 66, 73, 88, 91, 94, 95, 111, 120, 139, 153, 154, 157, 160, 161, 190, 202, 211, 230, 231, 245, 251, 252, 273, 276, 277, 322, 325, 343, 350, 364, 365, 371, 372, 378, 421, 430, 435, 463, 475, 496, 503, 507, 518, 524, 525, 554, 561
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    anmax = 1000; nmax = Floor[Sqrt[anmax/2]] + 1; Select[Union[Flatten[Table[Sum[k*(2*k-1), {k, i, j}], {i, 0, nmax}, {j, i, nmax}]]], # <= anmax &] (* Vaclav Kotesovec, Dec 21 2018 *)

A338495 Least number of hexagonal pyramidal numbers needed to represent n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 3, 1, 2, 3, 4, 5, 6, 4, 2, 3, 4, 5, 6, 7, 5, 3, 4, 5, 6, 7, 8, 6, 4, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 3, 4, 3, 4, 5, 6, 7, 4, 2, 3, 4, 5, 6, 7, 5, 3, 4, 5, 6, 7, 8, 6, 4, 5, 4, 5, 6, 7, 7, 5, 3, 1, 2, 3, 4, 5, 2, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 30 2020

Keywords

Crossrefs

Programs

  • Maple
    N:= 200: # for a(1)..a(N)
    V:= Vector(N):
    S:= {seq(n*(n+1)*(4*n-1)/6,n=1..floor((N*3/2)^(1/3)))}:
    V[convert(S,list)]:= 1:
    T:= S:
    for m from 2 do
      Tn:= select(`<=`,map(t -> op(t +~ S),T),N) minus T;
      if nops(Tn) = 0 then break fi;
      T:= T union Tn;
      V[convert(Tn,list)]:= m
    od:
    convert(V,list); # Robert Israel, Nov 02 2020

A366015 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 3 * A(x)).

Original entry on oeis.org

0, 1, 7, 76, 995, 14433, 223300, 3611016, 60305787, 1032115315, 18007816255, 319110233104, 5727667197044, 103913426353324, 1902498385538520, 35106179258551632, 652236828560562987, 12190651925663309175, 229059610932456616501, 4324334144117016053500, 81983637468108446363755
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2023

Keywords

Comments

Reversion of g.f. for hexagonal pyramidal numbers (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^4/(1 - 3 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 3 x)/(1 + x)^4, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] 3^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(4*n,n-k-1) * 3^k for n > 0.

A062368 Multiplicative with a(p^e) = (e+1)*(e+2)*(4*e+3)/6.

Original entry on oeis.org

1, 7, 7, 22, 7, 49, 7, 50, 22, 49, 7, 154, 7, 49, 49, 95, 7, 154, 7, 154, 49, 49, 7, 350, 22, 49, 50, 154, 7, 343, 7, 161, 49, 49, 49, 484, 7, 49, 49, 350, 7, 343, 7, 154, 154, 49, 7, 665, 22, 154, 49, 154, 7, 350, 49, 350, 49, 49, 7, 1078, 7, 49, 154, 252, 49, 343, 7, 154
Offset: 1

Views

Author

Vladeta Jovovic, Jul 07 2001

Keywords

Comments

Conjecture: this is the third inverse Mobius transform of the sequence 4^A001221(n). - R. J. Mathar, Aug 09 2012

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)*(4*e+3)/6; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 05 2023 *)

Formula

a(n) = Sum_{i|n, j|n} tau(i)*tau(j)/tau(gcd(i, j)), where tau(n) = number of divisors of n, cf. A000005.
Also a(n) = Sum_{i|n, j|n} tau(lcm(i, j)).
a(n) = Sum_{d|n} tau_3(d^2) = Sum_{d|n} A007425(d^2). - Enrique Pérez Herrero, Jan 17 2013

A185872 Accumulation array of the (odd,odd)-polka dot array A185868, by antidiagonals.

Original entry on oeis.org

1, 5, 7, 16, 24, 22, 38, 59, 65, 50, 75, 120, 141, 136, 95, 131, 215, 262, 274, 245, 161, 210, 352, 440, 480, 470, 400, 252, 316, 539, 687, 770, 790, 741, 609, 372, 453, 784, 1015, 1160, 1225, 1208, 1099, 880, 525, 625, 1095, 1436, 1666, 1795, 1825, 1750, 1556, 1221, 715, 836, 1480, 1962, 2304, 2520, 2616, 2590, 2432, 2124, 1640, 946, 1090, 1947, 2605, 3090, 3420, 3605, 3647, 3540
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
   1,   5,  16,  38,  75
   7,  24,  59, 120, 215
  22,  54, 141, 262, 440
  50, 136, 174, 480, 770
		

Crossrefs

Cf. A185868.
Row 1: A174723; column 1: A002412.

Programs

  • Mathematica
    f[n_,k_]:=2n-1+(2n+2k-4)(2n+2k-3)/2;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185868 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]] (*formula for A185872 *)
    g[n_]:=Sum[f[n+1-k,k],{k,1,n}];
    Table[g[n],{n,50}] (* A185872 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]

Formula

T(n,k) = (k*n/6)*(4*n^2 + 6*n*k + 4*k^2 - 3*n - 9*k + 4), k>=1, n>=1.

A213836 Rectangular array: (row n) = b**c, where b(h) = 4*h-3, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 7, 2, 22, 13, 3, 50, 37, 19, 4, 95, 78, 52, 25, 5, 161, 140, 106, 67, 31, 6, 252, 227, 185, 134, 82, 37, 7, 372, 343, 293, 230, 162, 97, 43, 8, 525, 492, 434, 359, 275, 190, 112, 49, 9, 715, 678, 612, 525, 425, 320, 218, 127
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2012

Keywords

Comments

Principal diagonal: A213837.
Antidiagonal sums: A071238.
Row 1, (1,5,9,13,...)**(1,2,3,4,...): A002412.
Row 2, (1,5,9,13,...)**(2,3,4,5,...): (4*k^3 + 15*k^2 - 7*k)/6.
Row 3, (1,5,9,13,...)**(3,4,5,6,...): (4*k^3 + 27*k^2 - 13*k)/6.
For a guide to related arrays, see A212500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...7....22...50....95
2...13...37...78....140
3...19...52...106...185
4...25...67...134...230
5...31...82...162...275
6...37...97...190...320
		

Crossrefs

Cf. A212500.

Programs

  • Mathematica
    b[n_]:=4n-3;c[n_]:=n;
    t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
    TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
    Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
    r[n_]:=Table[t[n,k],{k,1,60}] (* A213836 *)
    Table[t[n,n],{n,1,40}] (* A213837 *)
    s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
    Table[s[n],{n,1,50}] (* A071238 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(n + (2*n+1)*x - 3*(n-1)*x^2) and g(x) = (1-x)^4.

A213837 Principal diagonal of the convolution array A213836.

Original entry on oeis.org

1, 13, 52, 134, 275, 491, 798, 1212, 1749, 2425, 3256, 4258, 5447, 6839, 8450, 10296, 12393, 14757, 17404, 20350, 23611, 27203, 31142, 35444, 40125, 45201, 50688, 56602, 62959, 69775, 77066, 84848, 93137
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2012

Keywords

Crossrefs

Cf. A000384, A002412, A213836, A220084 (for a list of numbers of the form n*P(k,n)-(n-1)*P(k,n-1), where P(k,n) is the n-th k-gonal pyramidal number).

Programs

  • Mathematica
    (See A213836.)
    LinearRecurrence[{4,-6,4,-1},{1,13,52,134},40] (* Harvey P. Dale, Aug 07 2025 *)

Formula

a(n) = n*(5 - 15*n + 16*n^2)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: f(x)/g(x), where f(x) = x*(1 + 9*x + 6*x^2) and g(x) = (1-x)^4.
a(n) = n*A002412(n) - (n-1)*A002412(n-1). [Bruno Berselli, Dec 11 2012]
a(n) = n*A000384(n) + sum( A000384(i), i=0..n-1 ). [Bruno Berselli, Dec 18 2013]
Previous Showing 51-60 of 93 results. Next