cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 93 results. Next

A323663 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is Sum_{j=1..n} binomial(j*k, k).

Original entry on oeis.org

1, 1, 3, 1, 7, 6, 1, 21, 22, 10, 1, 71, 105, 50, 15, 1, 253, 566, 325, 95, 21, 1, 925, 3256, 2386, 780, 161, 28, 1, 3433, 19489, 18760, 7231, 1596, 252, 36, 1, 12871, 119713, 154085, 71890, 17857, 2926, 372, 45, 1, 48621, 748342, 1303753, 747860, 214396, 38332, 4950, 525, 55
Offset: 1

Views

Author

Seiichi Manyama, Jan 23 2019

Keywords

Examples

			Square array begins:
    1,   1,    1,     1,       1,        1, ...
    3,   7,   21,    71,     253,      925, ...
    6,  22,  105,   566,    3256,    19489, ...
   10,  50,  325,  2386,   18760,   154085, ...
   15,  95,  780,  7231,   71890,   747860, ...
   21, 161, 1596, 17857,  214396,  2695652, ...
   28, 252, 2926, 38332,  539028,  7941438, ...
   36, 372, 4950, 74292, 1197036, 20212950, ...
		

Crossrefs

Columns 1-3 give A000217, A002412, A116689.
Rows 1-3 give A000012, A244174, A029848.
Main diagonal is A096131.
Cf. A060539.

A372751 a(n) = (3*n^5 + 4*n^3 - n)/6.

Original entry on oeis.org

1, 21, 139, 554, 1645, 4031, 8631, 16724, 30009, 50665, 81411, 125566, 187109, 270739, 381935, 527016, 713201, 948669, 1242619, 1605330, 2048221, 2583911, 3226279, 3990524, 4893225, 5952401, 7187571, 8619814, 10271829, 12167995, 14334431, 16799056, 19591649
Offset: 1

Views

Author

Kelvin Voskuijl, May 12 2024

Keywords

Comments

Sums of hexagonal numbers (A000384) in successive groups of length 1,2,3,etc, so 1, 6+15, 28+45+66, 91+120+153+190, etc.

Examples

			The hexagonal numbers and their groups summed begin
  1, 6, 15, 28, 45, 66, 91, 120, 153, 190
  \/ \---/  \--------/  \---------------/
  1,   21,     139,            554
		

Crossrefs

Cf. A000384 (hexagonal numbers), A002412 (their partial sums).
Cf. A260513 (for triangular numbers), A072474 (for squares), A372583 (for pentagonal numbers), A075664 (cubes).

Programs

Formula

From Stefano Spezia, May 12 2024: (Start)
G.f.: x*(1 + 15*x + 28*x^2 + 15*x^3 + x^4)/(1 - x)^6.
E.g.f.: exp(x)*x*(6 + 57*x + 79*x^2 + 30*x^3 + 3*x^4)/6. (End)

A374194 a(n) is the smallest number which can be represented as the sum of two nonzero hexagonal pyramidal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

2, 5972, 5170425
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 30 2024

Keywords

Comments

There are no further positive terms <= 10^15. - Michael S. Branicky, Jun 30 2024

Examples

			a(2) = 5972 = 1222 + 4750 = 1925 + 4047.
		

Crossrefs

A083215 a(n) = 1 + Sum(prime(i)*(2*i-1): 1<=i<=n).

Original entry on oeis.org

3, 12, 37, 86, 185, 328, 549, 834, 1225, 1776, 2427, 3278, 4303, 5464, 6827, 8470, 10417, 12552, 15031, 17800, 20793, 24190, 27925, 32108, 36861, 42012, 47471, 53356, 59569, 66236, 73983, 82236, 91141, 100454, 110735, 121456, 132917
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 01 2003

Keywords

Crossrefs

Cf. A002412.
Equals 1 + A316322(n).

Programs

  • Mathematica
    nxt[{n_, a_}] := {n + 1, a + Prime[n + 1] (2 n + 1)}; NestList[nxt,{1,2},50][[All,2]]+1 (* Harvey P. Dale, Jul 05 2018 *)
  • PARI
    a(n) = 1 + sum(i=1, n, prime(i)*(2*i-1)); \\ Michel Marcus, Jan 22 2022

Extensions

Definition corrected by Harvey P. Dale, Jul 03 2018

A095802 Upper right triangular matrix T^2, where T(i,j) = (-1)^i*(1-2*i) for 1 <= i <= j.

Original entry on oeis.org

1, -2, 9, 3, -6, 25, -4, 15, -10, 49, 5, -12, 35, -14, 81, -6, 21, -20, 63, -18, 121, 7, -18, 45, -28, 99, -22, 169, -8, 27, -30, 77, -36, 143, -26, 225, 9, -24, 55, -42, 117, -44, 195, -30, 289, -10, 33, -40, 91, -54, 165, -52, 255, -34, 361, 11, -30, 65, -56, 135, -66, 221, -60, 323, -38, 441, -12, 39, -50, 105, -72, 187, -78, 285, -68, 399, -42, 529
Offset: 1

Views

Author

Gary W. Adamson, Jun 07 2004

Keywords

Comments

Equivalently, (lower left) triangle M^2 = transpose(T)^2. The following description refers to the lower triangular version, but OEIS's "TABL" link displays the values more appropriately as an upper right triangle. - M. F. Hasler, Apr 18 2009
For n rows, use matrices in each row from the sequence 1, -3, 5, -7, ... (filling in with zeros except for the n-th row). Let the matrix = M, then square and delete the zeros. For example, the 3-row generator would be [1 0 0 / 1 -3 0 / 1 -3 5] = M. The nonzero elements of M^2 give the first 6 terms of the sequence.

Examples

			The matrix
  [  1   0   0   0 ...]
  [  1  -3   0   0 ...]
  [  1  -3   5   0 ...]
  [  1  -3   5  -7 ...]
squared yields
  [ +1   0   0   0 ...]
  [ -2  +9   0   0 ...]
  [ +3  -6  25   0 ...]
  [ -4  15 -10  49 ...]; the lower left triangle gives this sequence: 1; -2, 9; 3, -6, 25; ...
		

Crossrefs

Row sums with signs as shown = A002412, Hexagonal pyramidal numbers: (1, 7, 22, 50, 95, ...).
Cf. A002412.

Programs

  • PARI
    T=matrix(12,12,i,j,if(j>=i,(-1)^i*(1-2*i)))^2; concat(vector(#T,i,vecextract(T[,i],2^i-1))) \\ M. F. Hasler, Apr 18 2009

Formula

Diagonal elements are the odd squares: a(k(k+1)/2)=(2k+1)^2. First element in row k is (-1)^k*k. - M. F. Hasler, Apr 18 2009

Extensions

Edited and extended by M. F. Hasler, Apr 18 2009

A103217 Hexagonal numbers triangle read by rows: T(n,k)=(n+1-k)*(2*(n+1-k)-1).

Original entry on oeis.org

1, 6, 1, 15, 6, 1, 28, 15, 6, 1, 45, 28, 15, 6, 1, 66, 45, 28, 15, 6, 1, 91, 66, 45, 28, 15, 6, 1, 120, 91, 66, 45, 28, 15, 6, 1, 153, 120, 91, 66, 45, 28, 15, 6, 1, 190, 153, 120, 91, 66, 45, 28, 15, 6, 1, 231, 190, 153, 120, 91, 66, 45, 28, 15, 6, 1, 276, 231, 190, 153, 120, 91, 66
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 25 2005

Keywords

Comments

The triangle is generated by the product A*B = B*A of the infinite lower triangular matrices A =
1 0 0 0...
1 1 0 0...
1 1 1 0...
1 1 1 1...
...
and B =
1 0 0 0...
5 1 0 0...
9 5 1 0...
13 9 5 1...
...
The only prime hexagonal pyramidal number is 7. The only semiprime hexagonal pyramidal numbers are: 22, 95, 161. All greater hexagonal pyramidal numbers A002412 have at least 3 prime factors. Note that 7337 = 11 * 23 * 29 is a palindromic 3-brilliant number and 65941 = 23 * 47 * 61 is 3-brilliant. - Jonathan Vos Post, Jan 26 2005

Examples

			Triangle begins:
  1,
  6,1,
  15,6,1,
  28,15,6,1,
  45,28,15,6,1,
  66,45,28,15,6,1,
  91,66,45,28,15,6,1,
		

Crossrefs

Row sums give A002412 (hexagonal pyramidal numbers).

Programs

  • Mathematica
    T[n_, k_] := (n + 1 - k)*(2*(n + 1 - k) - 1); Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Feb 10 2005 *)
  • PARI
    T(n, k) = (n+1-k)*(2*(n+1-k)-1); for(i=0,10, for(j=0,i,print1(T(i,j),",")); print())

A103218 Triangle read by rows: T(n, k) = (2*k+1)*(n+1-k)^2.

Original entry on oeis.org

1, 4, 3, 9, 12, 5, 16, 27, 20, 7, 25, 48, 45, 28, 9, 36, 75, 80, 63, 36, 11, 49, 108, 125, 112, 81, 44, 13, 64, 147, 180, 175, 144, 99, 52, 15, 81, 192, 245, 252, 225, 176, 117, 60, 17, 100, 243, 320, 343, 324, 275, 208, 135, 68, 19, 121, 300, 405, 448, 441, 396, 325, 240
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 25 2005

Keywords

Comments

The triangle is generated from the product A * B of the infinite lower triangular matrix A =
1 0 0 0...
3 1 0 0...
5 3 1 0...
7 5 3 1...
... and B =
1 0 0 0...
1 3 0 0...
1 3 5 0...
1 3 5 7...
...

Examples

			Triangle begins:
1,
4,3,
9,12,5,
16,27,20,7,
25,48,45,28,9,
		

Crossrefs

Row sums give A002412 (hexagonal pyramidal numbers).
T(n, 0)=A000290(n+1) (the squares);
T(n, 1)=3*n^2=A033428(n);
T(n, 2)=5*n^2=A033429(n+1);
T(n, 3)=7*n^2=A033582(n+2);
Cf. A103219 (product B*A), A002412, A000290.

Programs

  • Mathematica
    T[n_, k_] := (2*k + 1)*(n + 1 - k)^2; Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Feb 10 2005 *)
  • PARI
    T(n, k) = (2*k+1)*(n+1-k)^2; for(i=0,10, for(j=0,i,print1(T(i,j),","));print())

A130269 A002260 * A051340.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 11, 13, 16, 15, 16, 18, 21, 25, 21, 22, 24, 27, 31, 36, 28, 29, 31, 34, 38, 43, 49, 36, 37, 39, 42, 46, 51, 57, 64, 45, 46, 48, 51, 55, 60, 66, 73, 81, 55, 56, 58, 61, 65, 70, 76, 83, 91, 100
Offset: 1

Views

Author

Gary W. Adamson, May 18 2007

Keywords

Comments

Row sums = A002412: (1, 7, 22, 50, 95, ...).

Examples

			First few rows of the triangle:
   1;
   3,  4;
   6,  7,  9;
  10, 11, 13, 16;
  15, 16, 18, 21, 25,
  21, 22, 24, 27, 31, 36;
  28, 29, 31, 34, 38, 43, 49;
  ...
		

Crossrefs

Formula

A002260 * A051340 as infinite lower triangular matrices.

A140729 Diagonal A(n,n) of array A(k,n) = Product of first n of k-gonal pyramidal numbers.

Original entry on oeis.org

40, 2100, 324000, 117771500, 86640153600, 115851776040000, 260111401804800000, 922852527136155000000, 4931966428685936640000000, 38193820496218904209973280000, 415101787718859995456102400000000
Offset: 3

Views

Author

Jonathan Vos Post, May 25 2008

Keywords

Comments

The array A(k,n) = Product of first n k-gonal pyramidal numbers begins:
===================================================================
..|n=1|n=2|..n=3|...n=4..|......n=5....|......n=6......|......n=7......|.......n=8.........|
k=3|.1.|.4.|..40.|....800.|.......28000.|.......1568000.|.....131712000.|.......15805440000.|A087047
k=4|.1.|.5.|..70.|...2100.|......115500.|......10510500.|....1471470000.|......300179880000.|
k=5|.1.|.6.|.108.|...4320.|......324000.|......40824000.|....8001504000.|.....2304433152000.|
k=6|.1.|.7.|.154.|...7700.|......731500.|.....117771500.|...29678418000.|....11040371496000.|
k=7|.1.|.8.|.208.|..12480.|.....1435200.|.....281299200.|...86640153600.|....39507910041600.|
k=8|.1.|.9.|.270.|.718900.|.....2551500.|.....589396500.|..214540326000.|...115851776040000.|
===================================================================

Examples

			a(3) = product of the first 3 triangular pyramidal (tetrahedral) numbers (A000292) = A087047(3) = 1 * 4 * 10 = 40.
a(4) = product of the first 4 square pyramidal numbers (A000330) = 1 * 5 * 14 * 30 = 2100.
a(5) = product of the first 5 pentagonal pyramidal numbers (A002411) = 1 * 6 * 18 * 40 * 75 = 324000.
a(6) = product of the first 6 hexagonal pyramidal numbers (A002412) = 1 * 7 * 22 * 50 * 95 * 161 = 117771500.
a(7) = product of the first 7 heptagonal pyramidal numbers (A002413) = 1 * 8 * 26 * 60 * 115 * 196 * 308 = 86640153600.
a(8) = product of the first 8 octagonal pyramidal numbers (A002414) = 1 * 9 * 30 * 70 * 135 * 231 * 364 * 540 = 115851776040000.
		

Crossrefs

Programs

  • Maple
    A130729 := proc(n) n!*(n+1)!*(n-2)^n*pochhammer(1+(5-n)/(n-2),n)/6^n ; end: seq(A130729(n),n=3..30) ; # R. J. Mathar, May 31 2008

Formula

A(k,n) = PRODUCT[j=1..n] (1/6)*j*(j+1)*[(k-2)*j+(5-k)].
a(n) ~ Pi^(3/2) * n^(4*n + 1/2) / (2^(n - 3/2) * 3^(n-1) * exp(3*n+2)) * (1 + (3*log(n) + 3*gamma + 5/4)/n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 29 2023

Extensions

More terms from R. J. Mathar, May 31 2008

A144080 Positions of hexagonal pyramidal numbers in the EKG sequence.

Original entry on oeis.org

1, 14, 19, 46, 85, 155, 233, 350, 494, 659, 878, 1163, 1460, 1828, 2260, 2726, 3271, 3873, 4564, 5321, 6151, 7032, 8044, 9151
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 09 2008

Keywords

Examples

			The hexagonal pyramidal number 9500 is located at position 9151 in the EKG sequence.
		

Crossrefs

Previous Showing 71-80 of 93 results. Next