cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A275994 Numerators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.

Original entry on oeis.org

1, -1, 1, -17, 31, -691, 5461, -929569, 3202291, -221930581, 4722116521, -968383680827, 14717667114151, -2093660879252671, 86125672563201181, -129848163681107301953, 868320396104950823611, -209390615747646519456961, 14129659550745551130667441, -8486725345098385062639014237
Offset: 1

Views

Author

Richard P. Brent, Sep 13 2016

Keywords

Comments

-log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion (t1/n + t2/n^3 + t3/n^5 + ...) where the numerators of the coefficients t1, t2, t3, ... are given by this sequence.
The sequence is different from A002425, but the first difference is at index 60 (see the text files).

Examples

			For n = 4, a(4) = numerator(-17/13336) = -17.
		

Crossrefs

Denominators are A275995.

Programs

  • Magma
    [Numerator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..20]];
    
  • Mathematica
    Table[Numerator[(1 - 4^(-n)) BernoulliB[2 n] / (n (2 n - 1))], {n, 30}] (* Vincenzo Librandi, Sep 15 2016 *)
  • PARI
    a(n) = numerator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ Joerg Arndt, Sep 14 2016

Formula

a(n) = numerator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).

A037239 Numerator of Pi^(2n)/(GAMMA(2n)*(1-2^(-2n))*Zeta(2n)); = 8*(highest power of 2 dividing n).

Original entry on oeis.org

8, 16, 8, 32, 8, 16, 8, 64, 8, 16, 8, 32, 8, 16, 8, 128, 8, 16, 8, 32, 8, 16, 8, 64, 8, 16, 8, 32, 8, 16, 8, 256, 8, 16, 8, 32, 8, 16, 8, 64, 8, 16, 8, 32, 8, 16, 8, 128, 8, 16, 8, 32, 8, 16, 8, 64, 8, 16, 8, 32, 8, 16, 8, 512, 8, 16, 8, 32, 8, 16, 8, 64, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Equals 8*A006519. Denominators given by A002425.

Programs

  • Magma
    [2^(3 + Valuation(n,2)): n in [1..80]]; // G. C. Greubel, Nov 01 2018
  • Maple
    with(numtheory): for n from 1 to 200 do if n mod 2 = 1 then printf(`%d,`,8) else printf(`%d,`,8*2^ifactors(n)[2][1][2]) fi; od:
    seq(2^(3+padic[ordp](n,2)), n=1..73); # Peter Luschny, Apr 03 2014
  • Mathematica
    a[n_] := 8*BitAnd[n, -n]; Table[a[n], {n, 1, 81}] (* Jean-François Alcover, Sep 20 2011, after Joerg Arndt *)
  • PARI
    a(n)=if(n<1,0,8*2^valuation(n,2))
    

Extensions

More terms from James Sellers, Jun 20 2000

A371639 a(n) = numerator(Voronoi(3, 2*n)) where Voronoi(c, n) = ((c^n - 1) * Bernoulli(n)) / (n * c^(n - 1)).

Original entry on oeis.org

2, -2, 26, -82, 1342, -100886, 1195742, -57242642, 31945440878, -276741323122, 26497552755742, -9169807783193206, 418093081574417342, -66910282127782482482, 37158050152167281792026, -2626016090388858294953362, 632184834985453539204543742, -1543534415494449734887808117378
Offset: 1

Views

Author

Peter Luschny, Mar 30 2024

Keywords

Comments

To begin with, we observe that if c = 2, then the numerator of Voronoi(2, 2*n) is the same as the numerator of Euler(2*n - 1, 1), which is equal to (-1)^n*A002425(n). Similarly, the denominator of Voronoi(2, 2*n) is A255932(n), which is equal to 2^A292608(n). The rational sequence r(n) = a(n) / A371640(n) examines the corresponding relationships in the case c = 3.
The function Voronoi, which is defined in the Name, was inspired by Voronoi's congruence. This congruence states that for any even integer k >= 2 and all positive coprime integers c, n: (c^k - 1)*N(k) == k*c^(k-1)*D(k)*Sum_{m=1..n-1} m^(k-1)* floor(m*c / n) mod n, where N(k) = numerator(Bernoulli(k)), D(k) = denominator( Bernoulli(k)) and gcd(N(k), D(k)) = 1.

Examples

			r(n) = 2/9, -2/81, 26/2187, -82/6561, 1342/59049, -100886/1594323, ...
		

References

  • Emma Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. 39 (1938), 350-360.
  • Štefan Porubský, Further Congruences Involving Bernoulli Numbers, Journal of Number Theory 16, 87-94 (1983).
  • Georgy Feodosevich Voronyi, On Bernoulli numbers, Comm. Charkou Math. Sot. 2, 129-148 (1890) (in Russian).

Crossrefs

Cf. A371640 (denominator), A371638.

Programs

  • Maple
    Voronoi := (a, k) -> ((a^k - 1) * bernoulli(k)) / (k * a^(k - 1)):
    VoronoiList := (a, len) -> local k; [seq(Voronoi(a, 2*k), k = 1..len)]:
    numer(VoronoiList(3, 18));

Formula

a(n) = Voronoi(3, 2*n) * 3^(2*n + valuation(n, 3)).

A013516 Denominators in the Taylor expansion exp(cosec(x)-cot(x))=1 + x/2 + x^2/8 + x^3/16 + 3*x^4/128 + 37*x^5/3840 + 59*x^6/15360 + ...

Original entry on oeis.org

1, 2, 8, 16, 128, 3840, 15360, 92160, 1474560, 185794560, 3715891200, 117964800, 2831155200, 51011754393600, 13603134504960, 8569974738124800, 1371195958099968000, 46620662575398912000, 239763407530622976000
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Comments

The numerators are apparently the same as A047691.

Examples

			exp(cosec(x)-cot(x)) = 1 +1*x/(2^1*1!) + 1*x^2/(2^2*2!) + 3*x^3/(2^3*3!) + 9*x^4/(2^4*4!) + 37*x^5/(2^5*5!) +  177*x^6/(2^6*6!) +959*x^7/(2^7*7!)+ ...
		

Crossrefs

Cf. A006229, A002425 (expansion of cosec(x)-cot(x)).

Programs

  • Maple
    A013516 := proc(n)
            exp(csc(x)-cot(x)) ;
            coeftayl( %,x=0,n) ;
            denom(%) ;
    end proc:  # R. J. Mathar, Dec 18 2011

Formula

a(n) = A047692(n) * 2^n. - Sean A. Irvine, Aug 07 2018

Extensions

Corrected by R. J. Mathar, Dec 18 2011

A339057 a(n) = (-1)^(n + 1)*3^(2*n + 1)*Euler(2*n + 1, 1/3)*2^(valuation_{2}(2*(n + 1))), the Steinhaus-Euler sequence S_{3}(n).

Original entry on oeis.org

1, 13, 121, 18581, 305071, 61203943, 4353296221, 6669149100757, 206772189255571, 128970681211645873, 24697503335329725121, 45583359018138184284551, 6235055851689626935206871, 7982707567621372702411448803, 2955418704408380517540605162821, 40101878131071637461151318174173269
Offset: 0

Views

Author

Peter Luschny, Nov 27 2020

Keywords

Examples

			The array of the general case S_{k}(n) starts:
[k]
[1] -1, -1,   -1,     -17,      -31,        -691,         -5461, ... [-A002425]
[2]  0,  0,    0,       0,        0,           0,             0, ...
[3]  1, 13,  121,   18581,   305071,    61203943,    4353296221, ... [this seq.]
[4]  2, 44,  722,  196888,  5746082,  2049374444,  259141449842, ...
[5]  3, 99, 2523, 1074243, 48982293, 27296351769, 5393115879063, ...
...
		

Crossrefs

Programs

  • Maple
    GenEuler := k -> (n -> (-1)^n*(-k)^(2*n+1)*euler(2*n+1, 1/k)):
    Steinhaus := n -> 2^padic[ordp](2*(n+1), 2):
    seq(Steinhaus(n)*GenEuler(3)(n), n = 0..15);
  • Mathematica
    GenEuler[n_, k_] := (-1)^n (-k)^(2 n + 1) EulerE[2 n + 1, 1/k] ;
    Steinhaus[n_] := 2^IntegerExponent[2*(n+1), 2];
    a[n_] := GenEuler[n, 3] Steinhaus[n]; Table[a[n], {n, 0, 15}]

A130653 Odd terms in A002430 = numerators in Taylor series for tan(x).

Original entry on oeis.org

1, 1, 17, 929569, 129848163681107301953, 7724760729208487305545342963324697288405380586579904269441, 357302767470032900576643605538835088084055212588960920085261795996340330997333306469144562500392344758421560010463942134842407723273904635849262137252097
Offset: 1

Views

Author

Alexander Adamchuk, Jun 20 2007

Keywords

Comments

Odd terms in A002430(n) correspond to the indices that are the powers of 2.

Examples

			tan(x) = x + 2 x^3/3! + 16 x^5/5! + 272 x^7/7! + ... = 1*x + 1/3*x^3 + 2/15*x^5 + 17/315*x^7 + 62/2835*x^9 + O(x^10).
A002430(n) begins {1, 1, 2, 17, 62, 1382, 21844, 929569, 6404582, 443861162, 18888466084, 113927491862, 58870668456604, 8374643517010684, 689005380505609448, 129848163681107301953, ...}.
Thus a(1) = 1, a(2) = 1, a(3) = 17, a(4) = 929569, a(5) = 129848163681107301953.
		

Crossrefs

Cf. A002430 = Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x). Cf. A001469, A002425, A046990, A089171, A110501, A036968.

Programs

  • Mathematica
    Table[ Numerator[ Abs[ 2^(2^n)(2^(2^n)-1)/(2^n)! * BernoulliB[ 2^n ] ] ], {n,1,8} ]

Formula

a(n) = Numerator[ Abs[ 2^(2^n)(2^(2^n)-1)/(2^n)! * BernoulliB[ 2^n ] ] ]. a(n) = A002430(2^(n-1)).

A238235 Numerators of Euler twin numbers Et(n).

Original entry on oeis.org

1, -1, -1, -1, 1, 1, -1, -17, 17, 31, -31, -691, 691, 5461, -5461, -929569, 929569, 3202291, -3202291, -221930581, 221930581, 4722116521, -4722116521, -968383680827, 968383680827, 14717667114151, -14717667114151
Offset: 0

Views

Author

Paul Curtz, Feb 20 2014

Keywords

Comments

Et(n) = 1, -1/2, -1/2, -1/4, 1/4, 1/2, -1/2, -17/8, 17/8, 31/2, -31/2, -691/4, 691/4, 5461/2, -5461/2,... =a(n)/b(n) is mentioned in A233808.
Denominators: b(n)= 1, 2, 2, 4, 4, 2, 2, 8, 8,... = A065176(n) with 1 instead of 0.
Et(n) is the first difference of 0, followed by A198631(n)/A006519(n+1).
Et(n+2) = -1/2, -1/4, 1/4, 1/2,... is an autosequence of the second kind. Its main diagonal is the double of the following diagonal, the inverse binomial transform of Et(n+2) being Et(n+2) signed.
The denominators of the difference table of Et(n+2) are even numbers of the form 2^p. For the Bernoulli twin numbers A051716(n+1)/A051717(n+2), the denominators of the difference table, A168426(n), are multiples of 3.

Crossrefs

Cf. A051716/A051717 (Bernoulli twin numbers).

Programs

  • Mathematica
    Join[{1, -1, -1}, Table[{nu = Numerator[EulerE[2*n+1, 1]], -nu}, {n, 1, 12}]] // Flatten (* Jean-François Alcover, Feb 24 2014 *)

Formula

Binomial transform of A141424(n)/(A053644(n) with 1 instead of 0).
a(2n+3) = (-1)^n*A002425(n+2) = -a(2n+4).

A335955 a(n) = (4^n*(Z(-n, 1/4) - Z(-n, 3/4)) + Z(-n, 1)*(2^(n+1)-1))*A171977(n+1), where Z(n, c) is the Hurwitz zeta function.

Original entry on oeis.org

0, -1, -1, 1, 5, -1, -61, 17, 1385, -31, -50521, 691, 2702765, -5461, -199360981, 929569, 19391512145, -3202291, -2404879675441, 221930581, 370371188237525, -4722116521, -69348874393137901, 968383680827, 15514534163557086905, -14717667114151, -4087072509293123892361
Offset: 0

Views

Author

Peter Luschny, Jul 20 2020

Keywords

Crossrefs

Programs

  • Maple
    HZeta := (s, v) -> Zeta(0, s, v):
    a := s -> (4^s*(HZeta(-s,1/4) - HZeta(-s,3/4)) + HZeta(-s,1)*(2^(s+1)-1))* 2^padic[ordp](2*(s+1),2): seq(a(n), n = 0..28);
  • Mathematica
    a[n_] := 2^(IntegerExponent[n + 1, 2] + 1) (4^n (HurwitzZeta[-n, 1/4] - HurwitzZeta[-n, 3/4]) + HurwitzZeta[-n, 1] (2^(n + 1) - 1));
    Table[FullSimplify[a[n]], {n, 0, 26}]

Formula

A002425 interleaved with A028296.
|Numerator(a(n)/n!)| = A050970(n+1) for n >= 1.
a(n) = 2*(4^n*(Z(-n, 1/4) - Z(-n, 3/4)) + Z(-n,1)*A335954(n+1)) where Z(n, c) is the Hurwitz zeta function.
Previous Showing 21-28 of 28 results.