cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 301 results. Next

A179089 a(n) = (1/n^2) * Sum_{k=0..n-1} (2k+1)*T_k^2(-3)^(n-1-k), where T_0, T_1, ... are central trinomial coefficients given by A002426.

Original entry on oeis.org

1, 0, 5, 13, 105, 576, 4005, 27000, 193193, 1402672, 10433709, 78807785, 603996745, 4683970032, 36702939429, 290184446349, 2312460578025, 18556825469040, 149842592021997, 1216719520281045, 9929612901775761, 81406058258856240
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 29 2010

Keywords

Comments

On Jun 28 2010, Zhi-Wei Sun conjectured that a(n) is an integer for every n=1,2,3,... and that a(p) = (1+p/3)/2 (mod p) for any prime p, where (p/3) is the Legendre symbol. In contrast, he showed that Sum_{k=0..n-1} (2k+1)*T_k^2*3^(n-1-k) = n*T_n*T_{n-1} for all n=1,2,3,...
The formula for a(n) in the formula section implies that a(n) is an integer. - Mark van Hoeij, Nov 13 2022

Examples

			For n = 4 we have a(4) = (T_0^2(-3)^3 + 3*T_1^2(-3)^2 + 5*T_2^2(-3) + 7*T_3^2)/4^2 = (-27 + 27 - 5*27 + 7^3)/16 = 13.
		

Crossrefs

Programs

  • Maple
    A002426 := n -> simplify(GegenbauerC(n, -n, -1/2)); seq( (A002426(n)+A002426(n-1))*(3*A002426(n-1)-A002426(n))/4, n=1..20); # Mark van Hoeij, Nov 13 2022
  • Mathematica
    TT[n_]:=Sum[Binomial[n,2k]Binomial[2k,k],{k,0,Floor[n/2]}] SS[n_]:=Sum[(2k+1)*TT[k]^2*(-3)^(n-1-k),{k,0,n-1}]/n^2 Table[SS[n],{n,1,50}]

Formula

G.f.: Integral(hypergeom([1/2, 3/2], [2], 16*x/(1 + 3*x)^2)/(1 + 3*x)^2). - Mark van Hoeij, Nov 10 2022
a(n) = (A002426(n)+A002426(n-1))*(3*A002426(n-1)-A002426(n))/4. - Mark van Hoeij, Nov 13 2022

A186038 a(n) = log_3(A002426(n)/numerator(A002426(n)/3^n)).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 1, 3, 0, 0, 1, 0, 0, 1, 2, 2, 4, 1, 1, 2, 1, 1, 2, 2, 2, 5, 0, 0, 1, 0, 0, 1, 1, 1, 3, 0, 0, 1, 0, 0, 1, 5, 3, 4, 2, 2, 3, 2, 2, 3, 3, 3, 6, 1, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 1, 1, 2, 3, 3, 6, 2, 2, 3, 2, 2, 3, 3, 3, 7
Offset: 0

Views

Author

Paul Barry, Feb 11 2011

Keywords

Comments

(-1)^a(n) = A186039(n).

Programs

  • Maple
    A186038 := proc(n)
        local m,ml ;
        m := A002426(n) ;
        ml := %/3^n ;
        m/numer(ml) ;
        ilog[3](%) ;
    end proc: # R. J. Mathar, Feb 13 2015
  • Mathematica
    b[n_] := If[n < 0, 0, 3^n Hypergeometric2F1[1/2, -n, 1, 4/3]];
    a[n_] := Log[3, b[n]/Numerator[b[n]/3^n]]; Table[a[n], {n,0,50}] (* G. C. Greubel, Feb 27 2017 *)

A216584 a(n) = A002426(n)*A000984(n); product of central trinomial coefficients and central binomial coefficients.

Original entry on oeis.org

1, 2, 18, 140, 1330, 12852, 130284, 1348776, 14247090, 152618180, 1654120468, 18096447096, 199536967084, 2214714164600, 24720932068200, 277289164574640, 3123590583844530, 35318969120870820, 400692715550057700, 4559427798654821400, 52020436064931914580
Offset: 0

Views

Author

Paul D. Hanna, Sep 08 2012

Keywords

Examples

			L.g.f.: L(x) = 2*x + 18*x^2/2 + 140*x^3/3 + 1330*x^4/4 + 12852*x^5/5 + 130284*x^6/6 + ...
where
exp(L(x)) = 1 + 2*x + 11*x^2 + 66*x^3 + 485*x^4 + 3842*x^5 + 32712*x^6 + ... + A216585(n)*x^n/n + ...
The central trinomial coefficients (A002426) begin:
[1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953, 25653, 73789, ...];
The central binomial coefficients (A000984) begin:
[1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, ...].
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2*n, n]*Sum[ Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}], {n,0,50}] (* G. C. Greubel, Feb 27 2017 *)
  • PARI
    {a(n) = polcoeff((1+x+x^2)^n,n) * polcoeff((1+2*x+x^2)^n,n)}
    
  • PARI
    {a(n)=binomial(2*n,n)*sum(k=0,n\2,binomial(n,2*k)*binomial(2*k,k))}
    for(n=0,21,print1(a(n),", "))

Formula

a(n) = binomial(2*n, n) * Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k, k).
Logarithmic derivative of A216585, after ignoring initial term a(0).
a(n) = [x^n*y^n] ( 1 + (x + y)^2 + (x + y)^4 )^n. - Peter Bala, Feb 17 2020
G.f.: hypergeom([1/2, 1/2],[1],16*x/(1+4*x))/sqrt(1+4*x). - Mark van Hoeij, May 13 2025

A216585 G.f.: exp( Sum_{n>=1} A000984(n)*A002426(n)*x^n/n ), where A000984 is the central binomial coefficients and A002426 is the central trinomial coefficients.

Original entry on oeis.org

1, 2, 11, 66, 485, 3842, 32712, 291568, 2697610, 25679316, 250190125, 2484270622, 25062816127, 256275246582, 2650947762450, 27697861115740, 291943603838698, 3101066786857876, 33167191013319532, 356924515784037128, 3862299973917286526, 42003704374124712172
Offset: 0

Views

Author

Paul D. Hanna, Sep 09 2012

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 66*x^3 + 485*x^4 + 3842*x^5 + 32712*x^6 +...
such that
log(A(x)) = 2*1*x + 6*3*x^2/2 + 20*7*x^3/3 + 70*19*x^4/4 + 252*51*x^5/5 + 924*141*x^6/6 +...+ A000984(n)*A002426(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,binomial(2*m,m)*polcoeff((1+x+x^2)^m,m)*x^m/m+x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))

Formula

Logarithmic derivative yields A216584.

A225328 a(n) = A002426(n)^n, where A002426 is the central trinomial coefficients.

Original entry on oeis.org

1, 1, 9, 343, 130321, 345025251, 7858047974841, 1447930954097073657, 2255178731296086753063201, 29588424532574699588724679418659, 3308916781795356089160906125431831800049, 3166064605712293355286523525163381509588445189997
Offset: 0

Views

Author

Paul D. Hanna, Aug 03 2013

Keywords

Comments

Logarithmic derivative of A168599 (upon ignoring the initial term, a(0), of this sequence).

Examples

			L.g.f.: L(x) = x + 9*x^2/2 + 343*x^3/3 + 130321*x^4/4 + 345025251*x^5/5 + ...
where exponentiation is an integer series:
exp(L(x)) = 1 + x + 5*x^2 + 119*x^3 + 32707*x^4 + 69038213*x^5 + 1309743837515*x^6 + ... + A168599(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, 3^n Hypergeometric2F1[1/2, -n, 1, 4/3]]; Table[a[n]^n, {n, 0, 50}] (* G. C. Greubel, Feb 27 2017 *)
  • PARI
    {a(n)=sum(k=0,n, binomial(n, k)*binomial(k, n-k))^n}
    for(n=0,20,print1(a(n),", "))

Formula

L.g.f.: Sum_{n>=1} a(n)*x^n/n = log( Sum_{n>=0} A168599(n)*x^n ).

A059728 a(0)=3; thereafter, a(n) = A002426(n+1) + Fibonacci(n-1)*(Fibonacci(n-1) + 1).

Original entry on oeis.org

3, 3, 9, 21, 57, 153, 423, 1179, 3321, 9415, 26843, 76869, 220951, 637107, 1842129, 5339133, 15507641, 45127965, 131548859, 384059009, 1122835671, 3286907517, 9633053985, 28262033613, 82998088607, 243963263943, 717698981853, 2112976735749
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2001

Keywords

Examples

			a(6) = F_5*(F_5+1) + A002426(7) = 30 + 393 = 423.
		

Programs

  • Magma
    P:=PolynomialRing(Integers()); [Max(Coefficients((1+x+x^2)^(n+1)))+(Fibonacci(n-1)*(Fibonacci(n-1)+1)): n in [0..30]]; // Vincenzo Librandi, Dec 24 2016
  • Mathematica
    b[n_] := If[n < 0, 0, 3^n Hypergeometric2F1[1/2, -n, 1, 4/3]];  Table[b[n + 1] + Fibonacci[n - 1]*(1 + Fibonacci[n - 1]), {n, 0,50}] (* G. C. Greubel, Feb 27 2017 *)

A080896 Expansion of the exponential series exp( x * T(x) ) = exp( x / sqrt(1 - 2*x - 3*x^2) ), where T(x) is the ordinary generating series of the central trinomial coefficients (A002426).

Original entry on oeis.org

1, 1, 3, 25, 265, 3741, 64051, 1298053, 30295665, 800411545, 23601417571, 768200763441, 27352316065273, 1057402991121205, 44102326806885075, 1973793512480683741, 94345589402816289121, 4796647490592139950513
Offset: 0

Views

Author

Emanuele Munarini, Mar 31 2003

Keywords

Crossrefs

Cf. A002426.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[x/Sqrt[1-2 x-3x^2]],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Sep 08 2011 *)
  • PARI
    x='x + O('x^50); Vec(serlaplace(exp(x/sqrt(1 - 2*x - 3*x^2)))) \\ G. C. Greubel, Feb 27 2017

Formula

E.g.f.: exp(x/sqrt(1 - 2*x - 3*x^2)).

A087178 ((1/2)/p^2)*(T(p)-1) where p runs through the prime >= 5 and T(k) is the k-th central trinomial number (A002426).

Original entry on oeis.org

1, 4, 106, 630, 26185, 178666, 8991709, 3678166249, 28031525940, 13143231877116, 824038411943548, 6585233816779471, 427212999940414402, 230740449590738871715, 128696758387000610268418, 1065763722815793191814814, 614675485079469646826034034
Offset: 1

Views

Author

Benoit Cloitre, Oct 19 2003

Keywords

Crossrefs

Cf. A002426.

Programs

  • Mathematica
    f[0] = f[1] = 1; f[n_] := f[n] = ((2*n-1)*f[n-1] + 3*(n-1)*f[n-2])/n; Table[(f[p]-1)/(2*p^2), {p, Prime[Range[3, 20]]}] (* Amiram Eldar, Apr 21 2025 *)

Formula

T(n) == 1 (mod n^2) iff n is prime.

A152227 Eigentriangle, row sums = A002426.

Original entry on oeis.org

1, 2, 1, 2, 2, 3, 4, 2, 6, 7, 8, 4, 6, 14, 19, 18, 8, 12, 14, 38, 51, 42, 18, 24, 28, 38, 102, 141, 102, 42, 54, 56, 76, 102, 282, 393254, 102, 126, 126, 152, 204, 282, 786, 1107, 646, 254, 306, 2944, 342, 408, 564, 786, 2214, 3139
Offset: 1

Views

Author

Gary W. Adamson, Nov 29 2008

Keywords

Comments

Row sums = A002426 starting with offset 1: (1, 3, 7, 19, 51, 141, 393,...).
Right border = A002426, left border = A007971
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
1;
2, 1;
2, 2, 3;
4, 2, 6, 7;
8, 4, 6, 14, 19;
18, 8, 12, 14, 38, 51;
42, 18, 24, 28, 38, 102, 141;
102, 42, 54, 56, 76, 102, 282, 393;
254, 102, 126, 126, 152, 204, 282, 786, 1107;
646, 254, 306, 394, 342, 408, 564, 786, 2214, 3139;
...
Row 3 = (4, 2, 6, 7) = termwise products of (4, 2, 2, 1) and (1, 1, 3, 7)
		

Formula

Triangle read by rows, M*Q. M = an infinite lower triangular matrix with A007971 in every column: (1, 2, 2, 4, 8, 18, 42,...); and Q = a matrix with A002426 as the main diagonal and the rest zeros.

A162533 a(n) = Sum_{k=0..n} binomial(n,2k)*A002426(k).

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 68, 176, 454, 1174, 3052, 7976, 20932, 55108, 145448, 384704, 1019462, 2706214, 7194956, 19155896, 51065260, 136284236, 364097912, 973654240, 2605983772, 6980545276, 18712478072, 50196568144, 134739960904, 361892443592, 972537193168
Offset: 0

Views

Author

Paul Barry, Jul 05 2009

Keywords

Comments

Hankel transform is (-1)^binomial(n,2)*(-2)^A128054(n) (see A128055).

Crossrefs

Cf. A027826.

Programs

  • Mathematica
    b[n_] := If[n < 0, 0, 3^n Hypergeometric2F1[1/2, -n, 1, 4/3]]; Table[Sum[Binomial[n, 2*k]*b[k], {k, 0, n}], {n, 0, 50}] (* or *) CoefficientList[Series[(1-x)/sqrt(1-4*x+4*x^2-4*x^4), {x, 0, 50}], x] (* G. C. Greubel, Feb 27 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x)/sqrt(1-4*x+4*x^2-4*x^4)) \\ G. C. Greubel, Feb 27 2017

Formula

G.f.: (1-x)/((1-x)^2-x^2-2x^4/((1-x)^2-x^2-x^4/((1-x)^2-x^2-x^4/(1-... (continued fraction).
G.f.: (1-x)/sqrt(1-4*x+4*x^2-4*x^4) = (1-x)/sqrt((1-2*x)^2-4*x^4) = (1-x)/sqrt((1-x-2*x^2)*(1-x+2*x^2)). - Paul Barry, Oct 13 2009
Conjecture: n*a(n) + (4-5*n)*a(n-1) + 2*(4*n-7)*a(n-2) + 4*(3-n)*a(n-3) + 4*(2-n)*a(n-4) + 4*(n-4)*a(n-5) = 0. - R. J. Mathar, Nov 16 2011
a(n) ~ 3^(1/4) * (1 + sqrt(3))^(n + 1/2) / (2^(3/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jun 08 2019
Previous Showing 21-30 of 301 results. Next