A181147 a(n) = Sum_{k=0..n-1} (105k+44)*C(2k,k)^2*T(k)*(-1)^(n-1-k)/(2n*C(2n,n)), where T(k) (k=0,1,2,...) are central trinomial coefficients given by A002426.
11, 23, 224, 1747, 16754, 162392, 1651206, 17126327, 181182446, 1943132842, 21080299228, 230802972664, 2546569337336, 28280754214358, 315824396838386, 3544003431783795, 39936833763112790, 451718158386620678
Offset: 1
Keywords
Examples
For n=2 we have a(2) = (44*1^2*T(0)(-1) + (105+44)*2^2*T(1))/(2*2*binomial(4,2)) = 23.
Links
- D. S. McNeil, Table of n, a(n) for n = 1..900
- Zhi-Wei Sun, Open Conjectures on Congruences, preprint, arXiv:0911.5665 [math.NT], 2009-2011.
- Zhi-Wei Sun, On sums related to central binomial and trinomial coefficients, preprint, arXiv:1101.0600 [math.NT], 2011-2014.
Programs
-
Maple
T:= n-> `if`(n=0, 1, coeff ((x^2+x+1)^n, x, n)): a:= n-> add ((105*k+44) *binomial (2*k, k)^2 *T(k)*(-1)^(n-1-k), k=0..n-1)/ (2*n*binomial (2*n, n)): seq (a(n), n=1..30);
-
Mathematica
T[k_]:=If[k>0,Coefficient[(x^2+x+1)^k,x^k],1] A[n_]:=Sum[(105k+44)Binomial[2k,k]^2*T[k](-1)^(n-1-k),{k,0,n-1}]/(2n*Binomial[2n,n]) Table[A[n],{n,1,50}]
Comments