cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A114474 Number of decimal digits in the denominator of Zeta(10^n).

Original entry on oeis.org

1, 5, 133, 2277, 32660, 426486, 5264705, 62646781
Offset: 0

Views

Author

Eric W. Weisstein, Dec 01 2005

Keywords

Crossrefs

Cf. A002432.

Programs

  • Mathematica
    Table[ Floor[ Log[ 10, Denominator[ Zeta[ 10^n]]] + 1], {n, 0, 6}] (* Robert G. Wilson v, Dec 01 2005 *)
    IntegerLength[Denominator[Zeta[10^Range[0,7]]]] (* Harvey P. Dale, Aug 18 2016 *)

Extensions

a(7) from Vaclav Kotesovec, Mar 05 2016

A188060 Numerator of 8^(2n-1) |B(2n)| / (2n)!, where B() are the Bernoulli numbers.

Original entry on oeis.org

8, 128, 4096, 32768, 1048576, 11593056256, 536870912, 7767448354816, 3014517285978112, 191986824837595136, 2733227576976736256, 66530577009460375453696, 5926115612870995607552, 488951148984934932554973184, 7946710949908368748447692488704, 71105936114697022329949662478336
Offset: 1

Views

Author

Eric Desbiaux, Apr 15 2011

Keywords

Comments

Start with zeta(2n) = (2Pi)^(2n) |B(2n)| /(2 (2n)!) and replace Pi by 4 arctan(1) and take the numerator of the rational part. The denominator is given by A036278.

Examples

			8/3,128/45,4096/945,32768/4725,...
		

Crossrefs

Programs

  • Maple
     f:=n->8^(2*n)*abs(B(2*n))/(2*(2*n)!); [seq(numer(f(n)),n=1..60)];

Extensions

Entry revised by N. J. A. Sloane, Apr 17 2011

A309946 a(n) = floor(Pi^n/Zeta(n)).

Original entry on oeis.org

0, 6, 25, 90, 295, 945, 2995, 9450, 29749, 93555, 294058, 924041, 2903320, 9121612, 28657269, 90030844, 282842403, 888579011, 2791558622, 8769948429, 27551618702, 86555983552, 271923674474, 854273468992, 2683779334331, 8431341566236, 26487840921750, 83214006759229, 261424512797515
Offset: 1

Views

Author

Seiichi Manyama, Aug 24 2019

Keywords

Examples

			Pi^12/Zeta(12) = 638512875/691 = 924041.78... So a(12) = 924041.
		

Crossrefs

Decimal expansion of Pi^k/Zeta(k): A308637 (k = 3), A309926 (k = 5), A309927 (k = 7), A309928 (k = 9), A309929 (k = 11).
Cf. A001672 (floor(Pi^n)), A002432, A046988, A100594.

Programs

  • Mathematica
    Table[Floor[Pi^n/Zeta[n]], {n, 20}] (* Alonso del Arte, Aug 24 2019 *)
  • PARI
    {a(n) = if(n==1, 0, n==4, 90, floor(Pi^n/zeta(n)))}

Formula

a(2*n) = A100594(n).

A340243 a(n) = denominator((2*n-1)*zeta(2*n)/Pi^(2*n)).

Original entry on oeis.org

2, 6, 30, 189, 1350, 10395, 58046625, 1403325, 21709437750, 2292899734125, 80596287646875, 640374140030625, 8779111824511153125, 443779279041223125, 20913098524817639765625, 195202717402382161174828125, 2015813566807172297008593750, 367589532770719654160390625
Offset: 0

Views

Author

Artur Jasinski, Jan 01 2021

Keywords

Comments

For numerators a(n+1) see A046988.

Examples

			1/2, 1/6, 1/30, 1/189, 1/1350, 1/10395, 691/58046625, 2/1403325, 3617/21709437750, 43867/2292899734125, ...
		

Crossrefs

Programs

  • Maple
    a := n -> denom((2*n-1)*Zeta(2*n)/Pi^(2*n));
    seq(a(n), n=0..17); # Peter Luschny, Jan 12 2021
  • Mathematica
    Denominator[Table[(2 n - 1)*Zeta[2 n]/Pi^(2 n), {n, 0, 16}]]
  • PARI
    a(n) = denominator((2*n-1)*2^(2*n-1)*bernfrac(2*n)/(2*n)!); \\ Michel Marcus, Jun 15 2022

Formula

a(n) = denominator((2*n-1)*2^(2*n-1)*Bernoulli(2*n)/(2*n)!). - Peter Luschny, Jan 12 2021
Previous Showing 21-24 of 24 results.