A114474
Number of decimal digits in the denominator of Zeta(10^n).
Original entry on oeis.org
1, 5, 133, 2277, 32660, 426486, 5264705, 62646781
Offset: 0
-
Table[ Floor[ Log[ 10, Denominator[ Zeta[ 10^n]]] + 1], {n, 0, 6}] (* Robert G. Wilson v, Dec 01 2005 *)
IntegerLength[Denominator[Zeta[10^Range[0,7]]]] (* Harvey P. Dale, Aug 18 2016 *)
A188060
Numerator of 8^(2n-1) |B(2n)| / (2n)!, where B() are the Bernoulli numbers.
Original entry on oeis.org
8, 128, 4096, 32768, 1048576, 11593056256, 536870912, 7767448354816, 3014517285978112, 191986824837595136, 2733227576976736256, 66530577009460375453696, 5926115612870995607552, 488951148984934932554973184, 7946710949908368748447692488704, 71105936114697022329949662478336
Offset: 1
8/3,128/45,4096/945,32768/4725,...
A309946
a(n) = floor(Pi^n/Zeta(n)).
Original entry on oeis.org
0, 6, 25, 90, 295, 945, 2995, 9450, 29749, 93555, 294058, 924041, 2903320, 9121612, 28657269, 90030844, 282842403, 888579011, 2791558622, 8769948429, 27551618702, 86555983552, 271923674474, 854273468992, 2683779334331, 8431341566236, 26487840921750, 83214006759229, 261424512797515
Offset: 1
Pi^12/Zeta(12) = 638512875/691 = 924041.78... So a(12) = 924041.
-
Table[Floor[Pi^n/Zeta[n]], {n, 20}] (* Alonso del Arte, Aug 24 2019 *)
-
{a(n) = if(n==1, 0, n==4, 90, floor(Pi^n/zeta(n)))}
A340243
a(n) = denominator((2*n-1)*zeta(2*n)/Pi^(2*n)).
Original entry on oeis.org
2, 6, 30, 189, 1350, 10395, 58046625, 1403325, 21709437750, 2292899734125, 80596287646875, 640374140030625, 8779111824511153125, 443779279041223125, 20913098524817639765625, 195202717402382161174828125, 2015813566807172297008593750, 367589532770719654160390625
Offset: 0
1/2, 1/6, 1/30, 1/189, 1/1350, 1/10395, 691/58046625, 2/1403325, 3617/21709437750, 43867/2292899734125, ...
-
a := n -> denom((2*n-1)*Zeta(2*n)/Pi^(2*n));
seq(a(n), n=0..17); # Peter Luschny, Jan 12 2021
-
Denominator[Table[(2 n - 1)*Zeta[2 n]/Pi^(2 n), {n, 0, 16}]]
-
a(n) = denominator((2*n-1)*2^(2*n-1)*bernfrac(2*n)/(2*n)!); \\ Michel Marcus, Jun 15 2022
Comments