cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 66 results. Next

A382645 Number of king permutations on n elements not beginning with the smallest element and not ending with the largest element.

Original entry on oeis.org

1, 0, 0, 0, 2, 10, 68, 500, 4174, 38774, 397584, 4462848, 54455754, 717909202, 10171232060, 154142811052, 2488421201446, 42636471916622, 772807552752712, 14774586965277816, 297138592463202402, 6271277634164008170, 138596853553771517492, 3200958202120445923684, 77114612783976599209598
Offset: 0

Views

Author

Dan Li, Apr 01 2025

Keywords

Comments

A permutation p(1)p(2)...p(n) is a king permutation if |p(i+1)-p(i)|>1 for each 0

Examples

			For n = 4 the a(4) = 2 solutions are the two permutations 2413 and 3142.
For n = 5 the a(5) = 10 solutions are these 10 permutations: 24153, 25314, 31524, 35142, 35241, 41352, 42513, 42531, 52413, and 53142.
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[x/(1+x) + Sum[k!*x^k*(1-x)^k/(1+x)^(k+2), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 04 2025 *)
  • PARI
    my(N=30, t='t+O('t^N)); Vec(t/(1+t)+sum(n=0,N,n!*t^n*(1-t)^n/(1+t)^(n+2))) \\ Joerg Arndt, Apr 03 2025

Formula

G.f.: t/(1+t) + Sum_{n >= 0} n!*t^n*(1-t)^n/(1+t)^(n+2).
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Apr 04 2025

A000349 One-half the number of permutations of length n with exactly 2 rising or falling successions.

Original entry on oeis.org

0, 0, 0, 1, 5, 24, 128, 835, 6423, 56410, 554306, 6016077, 71426225, 920484892, 12793635300, 190730117959, 3035659077083, 51371100102990, 920989078354838, 17437084517068465, 347647092476801301, 7280060180210901232, 159755491837445900120, 3665942433747225901707
Offset: 0

Keywords

Comments

(1/2) times number of permutations of 12...n such that exactly 2 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • J. Riordan, A recurrence for permutations without rising or falling successions. Ann. Math. Statist. 36 (1965), 708-710.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002464, A000130, A086852. Equals A086853/2. A diagonal of A010028.

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    a:= n-> ceil(coeff(S(n), t, 2)/2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 11 2013
  • Mathematica
    S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1]-(1-t)*(n-2+3*t)*S[n-2]-(1-t)^2*(n-5+t)*S[n-3]+(1-t)^3*(n-3)*S[n-4]]]; a[n_] := Ceiling[Coefficient[S[n], t, 2]/2]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)

Formula

Coefficient of t^2 in S[n](t) defined in A002464, divided by 2.
Recurrence: (n-3)*(n-2)*(n-4)^3*a(n) = (n-3)*(n^4-9*n^3+23*n^2-4*n-29)*(n-4)*a(n-1) - (n-1)*(n^4-12*n^3+57*n^2-125*n+104)*(n-4)*a(n-2) - (n-2)*(n-1)*(n^4-15*n^3+83*n^2-198*n+169)*a(n-3) + (n-3)^3*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 10 2013
a(n) ~ sqrt(2*Pi)*n^(n+1/2)/exp(n+2). - Vaclav Kotesovec, Aug 10 2013

A010028 Triangle read by rows: T(n,k) is one-half the number of permutations of length n with exactly n-k rising or falling successions, for n >= 1, 1 <= k <= n. T(1,1) = 1 by convention.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 5, 5, 1, 1, 8, 24, 20, 7, 1, 11, 60, 128, 115, 45, 1, 14, 113, 444, 835, 790, 323, 1, 17, 183, 1099, 3599, 6423, 6217, 2621, 1, 20, 270, 2224, 11060, 32484, 56410, 55160, 23811, 1, 23, 374, 3950, 27152, 118484, 325322, 554306, 545135, 239653
Offset: 1

Keywords

Comments

(1/2) times number of permutations of 12...n such that exactly n-k of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

Examples

			Triangle T(n,k) begins:
  1;
  1,  0;
  1,  2,   0;
  1,  5,   5,    1;
  1,  8,  24,   20,    7;
  1, 11,  60,  128,  115,   45;
  1, 14, 113,  444,  835,  790,  323;
  1, 17, 183, 1099, 3599, 6423, 6217, 2621;
  ...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

Crossrefs

Diagonals give A001266 (and A002464), A000130, A000349, A001267, A001268.
Triangle in A086856 transposed. Cf. A001100.
Row sums give A001710.

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    T:= (n, k)-> ceil(coeff(S(n), t, n-k)/2):
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Dec 21 2012
  • Mathematica
    S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2]-(1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; T[n_, k_] := Ceiling[Coefficient[S[n], t, n-k]/2]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)

Formula

For n>1, coefficient of t^(n-k) in S[n](t) defined in A002464, divided by 2.

A117574 Total number of permutations p of [n] such that |p(i+3) - p(i)| is not equal to 3 for 1 <= i <= n-3.

Original entry on oeis.org

1, 1, 2, 6, 20, 80, 384, 2240, 15424, 123456, 1110928, 11287232, 127016304, 1565107248, 20935873872, 301974271248, 4669727780624, 77046043259824, 1350585114106416, 25062108668100208, 490725684463001488, 10109820295907492304
Offset: 0

Author

James Sellers, Apr 27 2006

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + leaper[3,3] on an n X n chessboard.

Crossrefs

Column k=3 of A333706.

Formula

Formula given in Tauraso reference.
Asymptotic (R. Tauraso 2006, quadratic term V. Kotesovec 2011): a(n)/n! ~ (1 + 8/n + 30/n^2)/e^2.

Extensions

Terms a(17)-a(28) from Vaclav Kotesovec, Apr 19 2011
Terms a(29)-a(30) from Vaclav Kotesovec, Apr 20 2012
a(0)=1 prepended by Alois P. Heinz, Feb 05 2023

A001266 One-half the number of permutations of length n without rising or falling successions.

Original entry on oeis.org

0, 0, 1, 7, 45, 323, 2621, 23811, 239653, 2648395, 31889517, 415641779, 5830753109, 87601592187, 1403439027805, 23883728565283, 430284458893701, 8181419271349931, 163730286973255373, 3440164703027845395, 75718273707281368117, 1742211593431076483419
Offset: 2

Keywords

Comments

(1/2) times number of permutations of 1, 2..., n such that none of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).
a(n) is also the number of Hamiltonian paths in the n-path complement graph. - Eric W. Weisstein, Apr 11 2018

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequence A002464 divided by 2 for n >= 2. A diagonal of A010028. A086856.

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    a:= n-> coeff(S(n), t, 0)/2:
    seq(a(n), n=2..25);  # Alois P. Heinz, Jan 11 2013
  • Mathematica
    S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t + 2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Coefficient[S[n], t, 0]/2; Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *)
    CoefficientList[Series[((Exp[(1 + x)/((-1 + x) x)] (1 + x) Gamma[0, (1 + x)/((-1 + x) x)])/((-1 + x) x) - x - 1)/(2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *)
    RecurrenceTable[{a[n] == (n + 1) a[n - 1] - (n - 2) a[n - 2] - (n - 5) a[n - 3] + (n - 3) a[n - 4], a[0] == a[1] == 1/2,
    a[2] == a[3] == 0}, a, {n, 2, 20}] (* Eric W. Weisstein, Apr 11 2018 *)

Formula

a(n) = A002464(n)/2 = A086856(n, 0).
(1/2) times coefficient of t^0 in S[n](t) defined in A002464.

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 16 2001

A001267 One-half the number of permutations of length n with exactly 3 rising or falling successions.

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 60, 444, 3599, 32484, 325322, 3582600, 43029621, 559774736, 7841128936, 117668021988, 1883347579515, 32026067455084, 576605574327174, 10957672400252944, 219190037987444577, 4603645435776504120, 101292568208941883236, 2329975164242735146316
Offset: 0

Keywords

Comments

(1/2) times number of permutations of 12...n such that exactly 3 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002464, A000130, A086852. Equals A086854/2. A diagonal of A010028.

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    a:= n-> coeff(S(n), t, 3)/2:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 11 2013
  • Mathematica
    S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Coefficient[S[n], t, 3]/2; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)

Formula

Coefficient of t^3 in S[n](t) defined in A002464, divided by 2.
a(n) ~ 2/(3*exp(2)) * n!. - Vaclav Kotesovec, Aug 10 2013
Recurrence: (n-4)*(2*n^6 - 52*n^5 + 557*n^4 - 3136*n^3 + 9740*n^2 - 15727*n + 10242)*a(n) = + (n-4)*(2*n^7 - 50*n^6 + 511*n^5 - 2693*n^4 + 7450*n^3 - 9041*n^2 - 157*n + 6666)*a(n-1) - (2*n^8 - 58*n^7 + 735*n^6 - 5289*n^5 + 23430*n^4 - 64575*n^3 + 106105*n^2 - 92312*n + 30900)*a(n-2) - (2*n^7 - 54*n^6 + 615*n^5 - 3795*n^4 + 13554*n^3 - 27681*n^2 + 29473*n - 12330)*(n-2)*a(n-3) + (2*n^6 - 40*n^5 + 327*n^4 - 1388*n^3 + 3184*n^2 - 3675*n + 1626)*(n-2)^2*a(n-4). - Vaclav Kotesovec, Aug 10 2013

A086853 Number of permutations of length n with exactly 2 rising or falling successions.

Original entry on oeis.org

0, 0, 0, 2, 10, 48, 256, 1670, 12846, 112820, 1108612, 12032154, 142852450, 1840969784, 25587270600, 381460235918, 6071318154166, 102742200205980, 1841978156709676, 34874169034136930, 695294184953602602, 14560120360421802464, 319510983674891800240
Offset: 0

Author

N. J. A. Sloane, Aug 19 2003

Keywords

Comments

Permutations of 12...n such that exactly 2 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

Crossrefs

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    a:= n-> ceil(coeff(S(n), t, 2)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 11 2013
  • Mathematica
    s[n_] := s[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*s[n-1] - (1-t)*(n-2+3*t)*s[n-2] - (1-t)^2*(n-5+t)*s[n-3] + (1-t)^3*(n-3)*s[n-4]]]; t[n_, k_] := Ceiling[Coefficient[s[n], t, k]]; a[n_] := t[n, 2]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)

Formula

Coefficient of t^2 in S[n](t) defined in A002464.
Conjecture: (-514*n+2465)*a(n) +2*(257*n^2-955*n-1085)*a(n-1) +(-555*n^2+2483*n-1670)*a(n-2) +16*(-17*n^2+73*n-75)*a(n-3) +(354*n^2+528*n-2299)*a(n-4) +2*(-121*n^2+1045*n-1401)*a(n-5) +3*(67*n-115)*(n-4)*a(n-6)=0. - R. J. Mathar, Jun 06 2013
shorter recurrence: (n-3)*(n-2)*(n-4)^3*a(n) = (n-3)*(n^4-9*n^3+23*n^2-4*n-29)*(n-4)*a(n-1) - (n-1)*(n^4-12*n^3+57*n^2-125*n+104)*(n-4)*a(n-2) - (n-2)*(n-1)*(n^4-15*n^3+83*n^2-198*n+169)*a(n-3) + (n-3)^3*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 10 2013
a(n) ~ 2*exp(-2) * n!. - Vaclav Kotesovec, Aug 10 2013

A089222 Number of ways of seating n people around a table for the second time without anyone sitting next to the same person as they did the first time.

Original entry on oeis.org

1, 0, 0, 0, 0, 10, 36, 322, 2832, 27954, 299260, 3474482, 43546872, 586722162, 8463487844, 130214368530, 2129319003680, 36889393903794, 675098760648204, 13015877566642418, 263726707757115400, 5603148830577775218, 124568968969991162100, 2892414672938546871250
Offset: 0

Author

Udi Hadad (somebody(AT)netvision.net.il), Dec 22 2003

Keywords

Comments

A078603 counts these arrangements up to circular symmetry (i.e., two arrangements are the same if one can be rotated to give the other). A002816 counts them up to dihedral symmetry (i.e., two arrangements are the same if one can be rotated or reflected to give the other). - Joel B. Lewis, Jan 28 2010

Examples

			a(4)=0 because trying to arrange 1,2,3,4 around a table will always give a couple who is sitting next to each other and differ by 1.
		

References

  • J. Snell, Introduction to Probability, e-book, pp. 101 Q. 20.

Crossrefs

Programs

  • Mathematica
    Same[cperm_, n_] := ( For[same = False; i = 2, (i <= n) && ! same, i++, same = ((Mod[cperm[[i - 1]], n] + 1) == cperm[[i]]) || ((Mod[cperm[[ i]], n] + 1) == cperm[[i - 1]])]; same = same || ((Mod[cperm[[n]], n] + 1) == cperm[[1]]) || ((Mod[ cperm[[1]], n] + 1) == cperm[[n]]); Return[same]); CntSame[n_] := (allPerms = Permutations[Range[n]]; count = 0; For[j = 1, j <= n!, j++, perm = allPerms[[j]]; If[ ! Same[perm, n], count++ ]]; Return[count]);
    (* or direct computation of terms *)
    Table[If[n<3, 0, n! + (-1)^n*2n + Sum[(-1)^r*(n/(n-r))^2 * (n-r)! * Sum[2^c * Binomial[r-1,c-1] * Binomial[n-r,c], {c,1,r}], {r,1,n-1}]], {n,1,25}] (* Vaclav Kotesovec, Apr 06 2012 *)

Formula

Inclusion-exclusion gives that for n > 2, we have a(n) = n! + 2*n*(-1)^n + Sum_{1 <= k <= m < n} (-1)^m * (n/k) * binomial(n-m-1, k-1) * binomial(m-1, k-1) * 2^k * n * (n-m-1)!. - Joel B. Lewis, Jan 28 2010
a(n) = (3*n-30)*a(n-11) + (6*n-45)*a(n-10) + (5*n+18)*a(n-9) - (8*n-139)*a(n-8) - (26*n-204)*a(n-7) - (4*n-30)*a(n-6) + (26*n-148)*a(n-5) + (8*n-74)*a(n-4) - (9*n-18)*a(n-3) - (2*n-15)*a(n-2) + (n+2)*a(n-1), n >= 14. - Vaclav Kotesovec, Apr 13 2010
The asymptotic expansion from article by Aspvall and Liang (also cited in article by Tauraso) is wrong. Bad terms are 736/(15*n^5) + 8428/(45*n^6) + 40174/(63*n^7). Right asymptotic formula is a(n) ~ (n!/e^2)*(1 - 4/n + 20/(3*n^3) + 58/(3*n^4) + 796/(15*n^5) + 7858/(45*n^6) + 40324/(63*n^7) + 140194/(63*n^8) + ...). Verified also numerically. For example, for n=200, exact/asymptotic results are 1.0000000000125542243 (Aspvall + Liang), 1.0000000000000008990 (Kotesovec 7 terms) or 1.0000000000000000121 (Kotesovec 8 terms). - Vaclav Kotesovec, Apr 06 2012
a(n) = 2*n*A002816(n) for n > 1. - Martin Renner, Apr 01 2022

Extensions

Tauraso reference from Parthasarathy Nambi, Dec 21 2006
More terms from Vladeta Jovovic, Nov 29 2009
a(0)=1 prepended by Alois P. Heinz, Jul 31 2019

A326411 Triangle T(n,k) read by rows: T(n,k) = the number of ways of seating n people around a table for the second time so that k pairs are maintained. Reflected and rotated sequences are counted as one.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 5, 5, 0, 1, 3, 12, 15, 20, 9, 0, 1, 23, 70, 112, 91, 49, 14, 0, 1, 177, 544, 740, 640, 302, 96, 20, 0, 1, 1553, 4500, 6003, 4725, 2439, 747, 165, 27, 0, 1, 14963, 41740, 53585, 41420, 20810, 7076, 1550, 260, 35, 0, 1
Offset: 0

Author

Witold Tatkiewicz, Aug 07 2019

Keywords

Comments

Poulet (1919) arrives at this triangle of numbers by considering n-sided polygons whose vertices lie on a circle. Call a side of such a polygon simple if its endpoints are adjacent on the circle. Then T(n,k) is the number of such polygons with k simple sides. There is also a connection with A002464 (see that entry). - N. J. A. Sloane, Mar 08 2022
Definition requires "pairs" and for n=0 it is assumed that there is 1 way of seating 0 people around a table for the second time so that 0 pairs are maintained and 1 person forms only one pair with him/herself. Therefore T(0,0)=1, T(1,0)=0 and T(1,1)=1.
The weighted average of each row using k as weights converges to 2 for large n and appears to be given by (Sum_{k} k*T(n,k))/n! = 2/(n-1) + 2.

Examples

			Assuming the initial order was {1,2,3,4,5} (therefore 1 and 5 form a pair as the first and last persons are neighbors in the case of a round table) there are 5 sets of ways of seating them again so that 3 pairs are conserved: {1,2,3,5,4}, {2,3,4,1,5}, {3,4,5,2,1}, {4,5,1,3,2}, {5,1,2,4,3}. Since within each set we do not allow for circular symmetry (e.g., {1,2,3,5,4} and its rotation to form {2,3,5,4,1} are counted as one) nor reflection ({1,2,3,5,4} and {4,5,3,2,1} are also counted as one), the total number of ways is 5 and therefore T(5,3)=5.
Unfolded table with n individuals (rows) forming k pairs (columns):
    0    1    2    3    4    5    6    7
0   1
1   0    1
2   0    0    1
3   0    0    0    1
4   0    0    2    0    1
5   1    0    5    5    0    1
6   3   12   15   20    9    0   1
7  23   70  112   91   49   14   0   1
		

Crossrefs

Cf. A002816 (column k=0).
Row sums: A001710(n-1) = Sum_k T(n,k).
Cf. also A326390 (accounting for rotation and reflection symmetry), A326397 (disregards reflection symmetry but allows rotation), A326407 (disregards rotation symmetry but allows reflection).
See in addition A002464.

Programs

  • Java
    See Links section
    
  • Maple
    A326411 := proc(n,k)
        option remember;
        if k > n or k < 0 then
            0;
        elif k = n then
            1;
        elif k =0 then
            if n < 5 then
                0 ;
            elif n = 5 then
                1 ;
            elif n = 6 then
                3 ;
            elif n = 7 then
                23 ;
            else
                # Poulet eq (6) page 120, shifted n->n-2
                -(n^3-8*n^2+18*n-21)*procname(n-1,0)
                -4*(n^2-5*n)*procname(n-2,0)
                +2*(n^3-11*n^2+33*n-18)*procname(n-3,0)
                -(n^2-7*n+9)*procname(n-4,0)
                -(n^3-10*n^2+28*n-15)*procname(n-5,0) ;
                -%/(n^2-7*n+9) ;
            end if;
        elif n <= 3 then
            0;
        else
            # Poulet eq (3) page 119
            2*(n-k)*procname(n-1,k-1)/(n-1)+2*k*procname(n-1,k)/(n-1)
                +(k-2)*procname(n-2,k-2)/(n-2) - 2*(k-1)*procname(n-2,k-1)/(n-2) + k*procname(n-2,k)/(n-2) ;
            %*n/k ;
        end if;
    end proc:
    for n from 0 to 12 do
        for k from 0 to n do
            printf("%a ",A326411(n,k)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Mar 17 2022
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k > n || k < 0, 0, k == n, 1, k == 0, Which[n<5, 0, n == 5, 1, n == 6, 3, n == 7, 23, True,
        pc = -(n^3 - 8*n^2 + 18*n - 21)*T[n-1, 0]
          - 4*(n^2 - 5*n)*T[n - 2, 0]
          + 2*(n^3 - 11*n^2 + 33*n - 18)*T[n-3, 0]
          - (n^2 - 7*n + 9)*T[n-4, 0]
          - (n^3 - 10*n^2 + 28*n - 15)*T[n-5, 0];
        -pc/(n^2 - 7*n + 9)], n <= 3, 0, True,
       pc = 2*(n-k)*T[n-1, k-1]/(n-1) + 2*k*T[n-1, k]/(n-1) +
         (k - 2)*T[n-2, k-2]/(n-2) -
         2*(k-1)*T[n-2, k-1]/(n-2) + k*T[n-2, k]/(n-2);
        pc*n/k];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 17 2023, after R. J. Mathar *)
  • PARI
    Q(n,k)={k*subst(serlaplace(polcoef((1 - 2*x -x^2)/((1 + x)*(1 + (1 - y)*x + y*x^2)) + O(x^n), n-1)), y, k)}
    row(n)={Vec(if(n<3, 1, (Q(n,y/(y-1))/2 + (-1)^n)*(y-1)^n), -n-1)} \\ Andrew Howroyd, Mar 01 2024

Formula

It appears that Poulet gives recurrences that generate the whole triangle. - N. J. A. Sloane, Mar 09 2022
T(n,n) = 1;
T(n,n-1) = 0 for n >= 1;
T(n,n-2) = n*(n-3)/2 for n >= 4 [Poulet];
T(n,n-3) = n*(n-4)*(2*n-7)/3 for n >= 4 [Poulet, corrected by N. J. A. Sloane, Mar 09 2022]
T(n,n-4) = (25/24)*n^4 + (23/12)*n^3 - (169/24)*n^2 + (85/12)*n - 3 for n > 5 (conjectured); [see Poulet]
T(n,n-5) = (26/15)*n^5 + (25/6)*n^4 - (83/6)*n^3 + (221/6)*n^2 - (299/10)*n + 13 for n > 5 (conjectured); [see Poulet]
T(n,n-6) = (707/240)*n^6 + (2037/240)*n^5 - (413/16)*n^4 + (2233/16)*n^3 - (2777/15)*n^2 + (3739/20)*n - 57 for n > 6 (conjectured). [See Poulet]

A382651 Number of king permutations on n elements without strict fixed points.

Original entry on oeis.org

1, 0, 0, 0, 2, 10, 68, 500, 4174, 38770, 397544, 4462476, 54452394, 717877882, 10170925492, 154139627692, 2488385952526, 42636054584106, 772802263942376, 14774515232543556, 297137552306148570, 6271261537872652418, 138596588342412866276, 3200953561821628327956, 77114526810424117688014
Offset: 0

Author

Dan Li, Apr 02 2025

Keywords

Comments

A permutation p(1)p(2)...p(n) is a king permutation if |p(i+1)-p(i)|>1 for each 0

Examples

			a(4) = 2 corresponds to these two permutations: 2413, 3142.
a(5) = 10 corresponds to these 10 permutations of length 5: 24153, 25314, 31524, 35142, 35241, 41352, 42513, 42531, 52413, 53142.
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1+x)/(x + (1+x)/Sum[k!*x^k*(1-x)^k/(1+x)^k, {k, 0, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 04 2025 *)
  • PARI
    N=30; t='t+O('t^N);
    A=sum(n=0, N, n!*t^n*(1-t)^n/(1+t)^n);
    gf=(1 + t)*A/(1 + t + t*A);
    Vec(gf)  \\ Joerg Arndt, Apr 03 2025

Formula

G.f.: (1 + t)*A(t)/(1 + t + t*A(t)) where A(t)=Sum_{n >= 0} n!*t^n*(1-t)^n/(1+t)^n is the g.f. for king permutations given by A002464.
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Apr 04 2025
Previous Showing 11-20 of 66 results. Next