cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A123665 a(n) = Sum_{k=1..21} n^A001358(k).

Original entry on oeis.org

22, 471260364628084305, 6457022669043550542502557676, 105149403852520725445003265581519105, 41911381174488637014293971538580334000626
Offset: 1

Views

Author

Jonathan Vos Post, Oct 04 2006

Keywords

Crossrefs

Programs

  • Magma
    [1 + n^4 + n^6 + n^9 + n^10 + n^14 + n^15 + n^21 + n^22 + n^25 +
    n^26 + n^33 + n^34 + n^35 + n^38 + n^39 + n^46 + n^49 + n^51 + n^55 + n^57 + n^58: n in [1..50]]; // G. C. Greubel, Oct 26 2017
  • Mathematica
    Table[1 + n^4 + n^6 + n^9 + n^10 + n^14 + n^15 + n^21 + n^22 + n^25 +
      n^26 + n^33 + n^34 + n^35 + n^38 + n^39 + n^46 + n^49 + n^51 +
      n^55 + n^57 + n^58, {n, 1, 50}] (* G. C. Greubel, Oct 26 2017 *)
  • PARI
    for(n=1,50, print1(1 + n^4 + n^6 + n^9 + n^10 + n^14 + n^15 + n^21 + n^22 + n^25 + n^26 + n^33 + n^34 + n^35 + n^38 + n^39 + n^46 + n^49 + n^51 + n^55 + n^57 + n^58, ", ")) \\ G. C. Greubel, Oct 26 2017
    

Formula

a(n) = 1 +n^4 +n^6 +n^9 +n^10 +n^14 +n^15 +n^21 +n^22 +n^25 +n^26 + n^33 +n^34 +n^35 +n^38 +n^39 +n^46 +n^49 +n^51 +n^55 +n^57 +n^58.

Extensions

Better name from Joerg Arndt, May 23 2021

A194003 Number of prime factors of n^8 + 1, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 4, 3, 3, 2, 6, 2, 4, 3, 3, 2, 2, 2, 4, 3, 3, 2, 4, 6, 3, 2, 2, 4, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 5, 2, 3, 2, 4, 4, 4, 3, 6, 2, 5, 2, 2, 2, 5, 2, 5, 4, 4, 3, 4, 3, 5, 4, 2, 3, 4, 2, 4
Offset: 0

Views

Author

Jonathan Vos Post, Aug 10 2011

Keywords

Comments

This is to A193330 as A002523(n) = n^4+1 is to A002522(n) = n^2 + 1, and as A060890(n) = n^8+1 is to A002522(n) = n^2 + 1. a(n) = 1 when n^8+1 is prime, iff n is in {1, 2, 4} unless there is a larger Fermat prime than 65537.

Examples

			a(10) = 2 because 10^8 + 1 = 100000001 = 17 * 5882353 has 2 prime factors.
a(40) = 6 because 40^8 + 1 = 6553600000001 = 17^2 * 113 * 337 * 641 * 929 has 6 prime factors (with multiplicity) and is the smallest example not squarefree.
		

Crossrefs

Programs

  • Magma
    [0] cat [&+[p[2]: p in Factorization(n^8+1)]:n in [1..90]]; // Marius A. Burtea, Feb 09 2020
  • Mathematica
    Join[{0}, Table[Total[Transpose[FactorInteger[n^8 + 1]][[2]]], {n, 50}]]
    PrimeOmega[Range[0,90]^8+1] (* Harvey P. Dale, May 27 2018 *)
  • PARI
    a(n) = bigomega(n^8+1); \\ Michel Marcus, Feb 09 2020
    

Formula

a(n) = A001222(A060890(n)) = bigomega(n^8+1) or Omega(n^8+1)

A217796 Primes of the form n^4+1 such that (n+2)^4+1 is also prime.

Original entry on oeis.org

17, 257, 4477457, 8503057, 40960001, 59969537, 384160001, 5802782977, 58594980097, 94197431057, 102627966737, 114733948177, 283982410001, 330123790097, 381671897617, 405519334417, 691798081537, 741637881857, 1700843738897, 1749006250001, 2073600000001
Offset: 1

Views

Author

Michel Lagneau, Oct 12 2012

Keywords

Comments

The corresponding n are in A217795.

Examples

			257 is in the sequence because  4^4+1 = 257 and (4+2)^4+1 = 1297 are both prime.
		

Crossrefs

Programs

  • Maple
    for n from 0 by 2 to 3500 do: if type(n^4+1,prime)=true and type((n+2)^4+1,prime)=true then printf(`%d, `, n^4+1):else fi:od:
  • Mathematica
    lst={}; Do[p=n^4+1; q=(n+2)^4+1;If[PrimeQ[p] && PrimeQ[q], AppendTo[lst, p]], {n, 0, 3500}];lst
    Select[Partition[Table[n^4+1,{n,1300}],3,1],AllTrue[{#[[1]],#[[3]]}, PrimeQ]&][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 17 2020 *)

A235982 Numbers n of the form p^4 + 1 (for prime p) such that n^4 + 1 is also prime.

Original entry on oeis.org

82, 38950082, 47458322, 131079602, 1982119442, 25856961602, 58120048562, 602425897922, 1053022816562, 1267247769842, 3491998578722, 7181161893362, 7759350084722, 10756569837842, 16948379819282, 28424689653362, 33122338550402, 36562351115762, 50897394646082
Offset: 1

Views

Author

Derek Orr, Jan 17 2014

Keywords

Comments

All numbers are congruent to 2 mod 20.

Examples

			10756569837842 = 1811^4 + 1 (1811 is prime) and 10756569837842^4 + 1 is prime, so 10756569837842 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    nfp4Q[n_]:=Module[{p=Surd[n-1,4]},AllTrue[{p,n^4+1},PrimeQ]]; Select[ Range[ 2700]^4+ 1,nfp4Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 08 2019 *)
  • Python
    import sympy
    from sympy import isprime
    {print(n**4+1) for n in range(10000) if isprime(n) if isprime((n**4+1)**4+1)}

A341907 T(n, k) is the result of replacing 2^e with k^e in the binary expansion of n; square array T(n, k) read by antidiagonals upwards, n, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 1, 3, 3, 1, 0, 0, 2, 4, 4, 4, 1, 0, 1, 2, 5, 9, 5, 5, 1, 0, 0, 3, 6, 10, 16, 6, 6, 1, 0, 1, 1, 7, 12, 17, 25, 7, 7, 1, 0, 0, 2, 8, 13, 20, 26, 36, 8, 8, 1, 0, 1, 2, 9, 27, 21, 30, 37, 49, 9, 9, 1, 0, 0, 3, 10, 28, 64, 31, 42, 50, 64, 10, 10, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Jun 04 2021

Keywords

Comments

For any n >= 0, the n-th row, k -> T(n, k), corresponds to a polynomial in k with coefficients in {0, 1}.
For any k > 1, the k-th column, n -> T(n, k), corresponds to sums of distinct powers of k.

Examples

			Array T(n, k) begins:
  n\k|  0  1   2   3   4    5    6    7    8    9    10    11    12
  ---+-------------------------------------------------------------
    0|  0  0   0   0   0    0    0    0    0    0     0     0     0
    1|  1  1   1   1   1    1    1    1    1    1     1     1     1
    2|  0  1   2   3   4    5    6    7    8    9    10    11    12
    3|  1  2   3   4   5    6    7    8    9   10    11    12    13
    4|  0  1   4   9  16   25   36   49   64   81   100   121   144
    5|  1  2   5  10  17   26   37   50   65   82   101   122   145
    6|  0  2   6  12  20   30   42   56   72   90   110   132   156
    7|  1  3   7  13  21   31   43   57   73   91   111   133   157
    8|  0  1   8  27  64  125  216  343  512  729  1000  1331  1728
    9|  1  2   9  28  65  126  217  344  513  730  1001  1332  1729
   10|  0  2  10  30  68  130  222  350  520  738  1010  1342  1740
   11|  1  3  11  31  69  131  223  351  521  739  1011  1343  1741
   12|  0  2  12  36  80  150  252  392  576  810  1100  1452  1872
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (v=0, e); while (n, n-=2^e=valuation(n,2); v+=k^e); v }

Formula

T(n, n) = A104258(n).
T(n, 0) = A000035(n).
T(n, 1) = A000120(n).
T(n, 2) = n.
T(n, 3) = A005836(n).
T(n, 4) = A000695(n).
T(n, 5) = A033042(n).
T(n, 6) = A033043(n).
T(n, 7) = A033044(n).
T(n, 8) = A033045(n).
T(n, 9) = A033046(n).
T(n, 10) = A007088(n).
T(n, 11) = A033047(n).
T(n, 12) = A033048(n).
T(n, 13) = A033049(n).
T(0, k) = 0.
T(1, k) = 1.
T(2, k) = k.
T(3, k) = k + 1.
T(4, k) = k^2.
T(5, k) = k^2 + 1 = A002522(k).
T(6, k) = k^2 + k = A002378(k).
T(7, k) = k^2 + k + 1 = A002061(k).
T(8, k) = k^3.
T(9, k) = k^3 + 1 = A001093(k).
T(10, k) = k^3 + k = A034262(k).
T(11, k) = k^3 + k + 1 = A071568(k).
T(12, k) = k^3 + k^2 = A011379(k).
T(13, k) = k^3 + k^2 + 1 = A098547(k).
T(14, k) = k^3 + k^2 + k = A027444(k).
T(15, k) = k^3 + k^2 + k + 1 = A053698(k).
T(16, k) = k^4 = A000583(k).
T(17, k) = k^4 + 1 = A002523(k).
T(m + n, k) = T(m, k) + T(n, k) when m AND n = 0 (where AND denotes the bitwise AND operator).

A349530 Least positive integer m such that the n numbers k*(k^4+1) (k=1..n) are pairwise distinct modulo m^2.

Original entry on oeis.org

1, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 25, 25, 25, 25, 25
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 21 2021

Keywords

Comments

Conjecture 1: Suppose that 5^a < sqrt(n) <= 5^(a+1). Then a(n) = 3*5^a if sqrt(n) <= sqrt(3)*5^a, and a(n) = 5^(a+1) otherwise.
Conjecture 2: Let f(n) be the least positive integer m such that the n numbers 18k*(k^4+1) (k=1..n) are pairwise distinct modulo m^2. Then f(n) is the least power of 5 not smaller than sqrt(n), except for 25 < n <= 45 (and in this case f(n) = 19).
Conjecture 3: Let n be a positive integer not among 26, 27, 28, 626, 627, 628, 629, 630, and define D(n) as the least positive integer m such that the n numbers k*(k^4+1) (k=1..n) are pairwise distinct modulo m. If 5^a < n <= 3*5^a, then D(n) = 3*5^a. If 3*5^a < n <= 5^(a+1), then D(n) = 5^(a+1).
We have verified the above conjectures for n up to 10^5.

Examples

			a(2) = 3 since the two numbers 1*(1^4+1) = 2 and 2*(2^4+1) = 34 are distinct modulo 3^2, but they are congruent modulo each of 1^2 and 2^2.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=f[k]=k*(k^4+1);
    U[m_,n_]:=U[m,n]=Length[Union[Table[Mod[f[k],m^2],{k,1,n}]]]
    tab={};s=1;Do[m=s;Label[bb];If[U[m,n]==n,s=m;tab=Append[tab,s];Goto[aa]];m=m+1;Goto[bb];Label[aa],{n,1,80}];Print[tab]

A088666 a(n) = (n^4 + 1) mod 10.

Original entry on oeis.org

1, 2, 7, 2, 7, 6, 7, 2, 7, 2, 1, 2, 7, 2, 7, 6, 7, 2, 7, 2, 1, 2, 7, 2, 7, 6, 7, 2, 7, 2, 1, 2, 7, 2, 7, 6, 7, 2, 7, 2, 1, 2, 7, 2, 7, 6, 7, 2, 7, 2, 1, 2, 7, 2, 7, 6, 7, 2, 7, 2, 1, 2, 7, 2, 7, 6, 7, 2, 7, 2, 1, 2, 7, 2, 7, 6, 7, 2, 7, 2, 1, 2, 7, 2, 7, 6, 7, 2, 7, 2
Offset: 0

Views

Author

Cino Hilliard, Nov 23 2003

Keywords

Comments

Periodic, with period 10. - Harvey P. Dale, Jan 31 2015

Crossrefs

Cf. A010879 (n mod 10), A002523 (n^4+1).

Programs

  • Magma
    [(n^4+1) mod 10: n in [0..100]]; // Vincenzo Librandi, Feb 01 2015
  • Mathematica
    PowerMod[Range[0,90],4,10]+1 (* or *) PadRight[{},100,{1,2,7,2,7,6,7,2,7,2}] (* Harvey P. Dale, Jan 31 2015 *)
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 2, 7, 2, 7, 6, 7, 2, 7, 2},90] (* Ray Chandler, Aug 26 2015 *)

Formula

a(n) = A010879(A002523(n)). - Michel Marcus, Feb 01 2015

Extensions

Edited by Don Reble, May 03 2006
Name clarified by Vincenzo Librandi, Feb 01 2015

A100606 a(n) = n^4 + n^3 + n.

Original entry on oeis.org

0, 3, 26, 111, 324, 755, 1518, 2751, 4616, 7299, 11010, 15983, 22476, 30771, 41174, 54015, 69648, 88451, 110826, 137199, 168020, 203763, 244926, 292031, 345624, 406275, 474578, 551151, 636636, 731699, 837030, 953343, 1081376, 1221891, 1375674, 1543535, 1726308
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Nov 30 2004

Keywords

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=0, a(1)=3, a(2)=26, a(3)=111, a(4)=324. - Harvey P. Dale, Apr 25 2015
From Elmo R. Oliveira, Aug 29 2025: (Start)
G.f.: x*(3 + 11*x + 11*x^2 - x^3)/(1-x)^5.
E.g.f.: x*(3 + 10*x + 7*x^2 + x^3)*exp(x). (End)

A123658 a(n) = 1 + n^4 + n^6 + n^9 + n^10.

Original entry on oeis.org

5, 1617, 79543, 1315073, 11735001, 70591825, 322948907, 1208225793, 3874742893, 11001010001, 28297158495, 67080151297, 148467846593, 309923269713, 615105191251, 1168247947265, 2134605998037, 3768860634193, 6453801131783, 10752064160001, 17474246985385
Offset: 1

Views

Author

Jonathan Vos Post, Oct 04 2006

Keywords

Examples

			a(40) = 1+40^(A001358(1))+40^(A001358(2))+40^(A001358(3))+40^(A001358(4)) = 1+40^4+40^6+40^9+40^10 = 10747908098560001.
		

Crossrefs

Programs

  • Magma
    [1+n^4+n^6+n^9+n^10: n in [0..50]]; // G. C. Greubel, Oct 17 2017
  • Mathematica
    Table[1+n^4+n^6+n^9+n^10, {n,1,50}] (* G. C. Greubel, Oct 17 2017 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{5,1617,79543,1315073,11735001,70591825,322948907,1208225793,3874742893,11001010001,28297158495},30] (* Harvey P. Dale, Jul 11 2025 *)
  • PARI
    a(n)=1+n^4+n^6+n^9+n^10 \\ Charles R Greathouse IV, Oct 07 2015
    

Formula

a(n) = 1 + n^4 + n^6 + n^9 + n^10.
G.f.: x*(x^10 -8*x^9 +615*x^8 +33654*x^7 +381288*x^6 +1242534*x^5 +1378908*x^4 +528210*x^3 +62031*x^2 +1562*x +5)/(1-x)^11. - Colin Barker, May 27 2012

A260534 Square array read by ascending antidiagonals, T(n,k) = Sum_{j=0..k} n^j*(C(k-j,j) mod 2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 5, 1, 7, 2, 1, 1, 1, 6, 1, 13, 5, 3, 1, 1, 1, 7, 1, 21, 10, 11, 1, 1, 1, 1, 8, 1, 31, 17, 31, 1, 4, 1, 1, 1, 9, 1, 43, 26, 69, 1, 23, 3, 1, 1, 1, 10, 1, 57, 37, 131, 1, 94, 21, 5, 1, 1, 1, 11
Offset: 0

Views

Author

Peter Luschny, Sep 20 2015

Keywords

Comments

A parametrization of Stern's diatomic series (which is here T(1,k)). (For other generalizations of Dijkstra's fusc function see the Luschny link.)

Examples

			Array starts:
n\k[0, 1,  2, 3,  4,  5,   6, 7,    8,    9,    10]
[0] 1, 1,  1, 1,  1,  1,   1, 1,    1,    1,     1, ...
[1] 1, 1,  2, 1,  3,  2,   3, 1,    4,    3,     5, ... [A002487]
[2] 1, 1,  3, 1,  7,  5,  11, 1,   23,   21,    59, ... [A101624]
[3] 1, 1,  4, 1, 13, 10,  31, 1,   94,   91,   355, ...
[4] 1, 1,  5, 1, 21, 17,  69, 1,  277,  273,  1349, ... [A101625]
[5] 1, 1,  6, 1, 31, 26, 131, 1,  656,  651,  3881, ...
[6] 1, 1,  7, 1, 43, 37, 223, 1, 1339, 1333,  9295, ...
[7] 1, 1,  8, 1, 57, 50, 351, 1, 2458, 2451, 19559, ...
[8] 1, 1,  9, 1, 73, 65, 521, 1, 4169, 4161, 37385, ...
-,-,-,-,A002061,A002522,A071568,-,-,A059826,-,A002523,
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> add(modp(binomial(k-j,j),2)*n^j, j=0..k):
    seq(lprint(seq(T(n,k),k=0..10)),n=0..5);
  • Mathematica
    Table[If[(n - k) == 0, 1, Sum[(n - k)^j Mod[Binomial[k - j, j], 2], {j, 0, k}]], {n, 0, 10}, {k, 0, n}] (* Michael De Vlieger, Sep 21 2015 *)
  • Python
    def A260534_T(n,k):
        return sum(0 if ~(k-j) & j else n**j for j in range(k+1)) # Chai Wah Wu, Feb 08 2016
Previous Showing 21-30 of 33 results. Next