cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A233567 Number of ways to write n = p + q (q > 0) with p and p^4 + phi(q)^4 both prime, where phi(.) is Euler's totient function (A000010).

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 1, 2, 2, 2, 3, 1, 3, 2, 4, 2, 3, 4, 3, 4, 5, 3, 5, 2, 6, 4, 3, 4, 5, 2, 1, 2, 3, 5, 5, 1, 3, 3, 4, 3, 3, 7, 6, 4, 7, 2, 5, 5, 5, 5, 3, 7, 4, 7, 4, 6, 5, 3, 5, 6, 6, 5, 5, 8, 9, 6, 7, 5, 6, 5, 7, 7, 5, 8, 7, 6, 6, 6, 8, 8, 5, 8, 11, 3, 7, 6, 7, 8, 7, 1, 8, 5, 6, 9, 10, 8, 9, 12, 8, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 13 2013

Keywords

Comments

Conjecture: If n > 2 is not equal to 5, then we have a(n) > 0, also there is a prime p < n with p^2 + phi(n-p)^2 prime.
We have verified this for n up to 10^7. The first assertion in the conjecture implies that there are infinitely many primes of the form p^4 + q^4, where p is a prime and q is a positive integer.

Examples

			a(7) = 1 since 7 = 3 + 4 with 3 and 3^4 + phi(4)^4 = 81 + 16 = 97 both prime.
a(12) = 1 since 12 = 7 + 5 with 7 and 7^4 + phi(5)^4 = 7^4 + 4^4 = 2657 both prime.
a(31) = 1 since 31 = 23 + 8 with 23 and 23^4 + phi(8)^4 = 23^4 + 4^4 = 280097 both prime.
a(36) = 1 since 36 = 3 + 33 with 3 and 3^4 + phi(33)^4 = 3^4 + 20^4 = 160081 both prime.
a(90) = 1 since 90 = 79 + 11 with 79 and 79^4 + phi(11)^4 = 79^4 + 10^4 = 38960081 both prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[Prime[k]^4+EulerPhi[n-Prime[k]]^4],1,0],{k,1,PrimePi[n-1]}]
    Table[a[n],{n,1,100}]

A100271 Primes of the form a^4 + b^3 with b>0.

Original entry on oeis.org

2, 17, 43, 89, 257, 283, 359, 593, 599, 1297, 2213, 2617, 3391, 3631, 4129, 4177, 4721, 6569, 7561, 8081, 8233, 9277, 10343, 10657, 10729, 11273, 12197, 13049, 13463, 14449, 14561, 15641, 15881, 16369, 16921, 17209, 17657, 19699, 22067, 24137
Offset: 1

Views

Author

T. D. Noe, Nov 18 2004

Keywords

Crossrefs

Cf. A002645 (primes of the form a^4 + b^4), A028916 (primes of the form a^4 + b^2), A100291 (numbers of the form a^4 + b^3).

Programs

  • Mathematica
    lst={}; Do[p=a^4+b^3; If[p<50000&&PrimeQ[p], AppendTo[lst, p]], {a, 64}, {b, 256}]; Union[lst]
  • PARI
    list(lim)=my(v=List([2]),a4,t); lim\=1; for(a=1,sqrtnint(lim-1,4), a4=a^4; forstep(b=1+a%2,sqrtnint(lim-a4,3),2, if(isprime(t=a4+b^3), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Aug 18 2017

A216285 Primes which cannot be written as x^4+y^4.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Crossrefs

Programs

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Dec 18 2014

A247857 Primes of the form a^2 + b^4, with repetition.

Original entry on oeis.org

2, 5, 17, 17, 37, 41, 97, 97, 101, 137, 181, 197, 241, 257, 257, 277, 281, 337, 337, 401, 457, 577, 617, 641, 641, 661, 677, 757, 769, 821, 857, 881, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2417, 2437
Offset: 1

Views

Author

Jean-François Alcover, Sep 25 2014

Keywords

Comments

Duplicates, which begin 17, 97, 257, 337, etc, are quartan primes A002645, except 2 (noticed by Michel Marcus).
Is there any triple?
No, by the uniqueness part of Fermat's two-squares theorem, at most one duplicate of a^2 + b^4 can exist. Namely, when a is a square, say a = B^2, then a^2 + b^4 = A^2 + B^4 where A = b^2. (This also proves Marcus's comment, since a^2 + b^4 = b^4 + B^4.) - Jonathan Sondow, Oct 03 2015

Examples

			Since 97 = 4^2 + 3^4 = 9^2 + 2^4, it appears twice in the sequence.
		

Crossrefs

Cf. A002645, A028916 (same sequence without repetition).

Programs

  • Haskell
    a247857 n = a247857_list !! (n-1)
    a247857_list = concat $ zipWith replicate a256852_list a000040_list
    -- Reinhard Zumkeller, Apr 11 2015
  • Mathematica
    max = 10^4; r = Reap[Do[n = a^2 + b^4; If[n <= max && PrimeQ[n], Sow[n]], {a, Sqrt[max]}, {b, max^(1/4)}]][[2, 1]]; Union[r, SameTest -> (False&)]

A182198 Primes of form a^2 + b^2 such that a^4 + b^4 is prime.

Original entry on oeis.org

2, 5, 13, 17, 29, 37, 41, 53, 73, 89, 137, 149, 157, 181, 257, 269, 281, 293, 313, 349, 373, 397, 401, 409, 421, 461, 541, 557, 577, 593, 661, 709, 733, 757, 769, 773, 797, 853, 937, 953, 1021, 1049, 1069, 1181, 1237, 1277, 1301, 1373, 1429, 1433, 1453, 1489
Offset: 1

Views

Author

Thomas Ordowski, Apr 20 2012

Keywords

Examples

			13 = 2^2 + 3^2, 2^4 + 3^4 = 97 is prime.
		

Crossrefs

Subsequence of A002313.
Cf. A003336 (numbers that are the sum of 2 nonzero 4th powers).
Cf. A002645 (quartan primes: primes of the form x^4 + y^4).

Programs

  • Mathematica
    nn = 40; t = {}; Do[c = a^2 + b^2; If[c < nn^2 && PrimeQ[c] && PrimeQ[a^4 + b^4], AppendTo[t, c]], {a, nn}, {b, a}]; Sort[t] (* T. D. Noe, Apr 22 2012 *)
    Take[#[[1]]^2+#[[2]]^2&/@Select[Tuples[Range[40],2],AllTrue[{#[[1]]^2+ #[[2]]^2, #[[1]]^4+#[[2]]^4},PrimeQ]&]//Union,60] (* Harvey P. Dale, Jun 25 2018 *)
  • PARI
    list(lim)=my(v=List(),t);lim\=1;for(x=1,sqrtint(lim),for(y=1, min(sqrtint(lim-x^2),x), if(isprime(t=x^2+y^2)&&isprime(x^4+y^4), listput(v,t)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Apr 22 2012

A250545 Numbers of the form 4^x + y^4 with x, y >= 0.

Original entry on oeis.org

1, 2, 4, 5, 16, 17, 20, 32, 64, 65, 80, 82, 85, 97, 145, 256, 257, 260, 272, 320, 337, 512, 626, 629, 641, 689, 881, 1024, 1025, 1040, 1105, 1280, 1297, 1300, 1312, 1360, 1552, 1649, 2320, 2402, 2405, 2417, 2465, 2657, 3425, 4096, 4097, 4100
Offset: 1

Views

Author

Vincenzo Librandi, Nov 26 2014

Keywords

Comments

No terms are divisible by 3, 7 or 11.
Subsequence of A001481 and A250482.

Examples

			17 is in this sequence because 4^0+2^4 = 4^2+1^4=17.
82 is in this sequence because 4^0+3^4 = 82.
		

Crossrefs

Cf. similar sequences listed in A250482.

Programs

  • Mathematica
    nn=10; Union[Select[Flatten[Table[4^x + y^4, {x, 0, nn}, {y, 0, nn}]], #<=nn^4 &]]

A291206 Semi-octavan primes: primes of the form x^4 + y^8.

Original entry on oeis.org

2, 17, 257, 337, 881, 1297, 2657, 6577, 10657, 14897, 16561, 28817, 65537, 65617, 66161, 80177, 83777, 149057, 160001, 166561, 260017, 280097, 331777, 391921, 394721, 411361, 463537, 596977, 614657, 621217, 847601, 1055137, 1336337, 1342897, 1682017, 1763137
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 1^4 + 1^8 = 2.
a(2) = 2^4 + 1^8 = 17.
a(3) = 1^4 + 2^8 = 257.
a(4) = 3^4 + 2^8 = 337.
		

Crossrefs

Subsequence of A002645 and hence of A028916. A006686 is a subsequence.

Programs

  • Mathematica
    Take[Select[Flatten[Table[x^4+y^8,{x,40},{y,40}]],PrimeQ]//Union,40] (* Harvey P. Dale, May 01 2025 *)
  • PARI
    list(lim)=my(v=List([2]),x4,t); for(x=1, sqrtnint(lim\=1,4), x4=x^4; forstep(y=x%2+1, sqrtnint(lim-x4,8), 2, if(isprime(t=x4+y^8), listput(v, t)))); Set(v)

A182277 Quartan semiprimes: semiprimes of the form x^4 + y^4, x>0, y>0.

Original entry on oeis.org

82, 626, 706, 1921, 2402, 4097, 6497, 6817, 7186, 8962, 10001, 10081, 14642, 17042, 18737, 20737, 21202, 21361, 23137, 24641, 28562, 28642, 29186, 29857, 35377, 38417, 38497, 43202, 44977, 50641, 53026, 53057, 65266, 67937, 72097, 83522, 83602, 84146, 84817, 85922
Offset: 1

Views

Author

Jonathan Vos Post, Apr 22 2012

Keywords

Comments

This is to A002645 as A001358 semiprimes is to A000040 primes.

Examples

			a(1) = 3^4 + 1^4 = 82 = 2 * 41.
		

References

  • George Greaves, On the representation of a number as a sum of two fourth powers, MATHEMATISCHE ZEITSCHRIFT, Volume 94, Number 3 (1966), 223-234, DOI: 10.1007/BF01111351.

Crossrefs

Cf. A003336 Numbers that are the sum of 2 nonzero 4th powers, A002645 Quartan primes: primes of the form x^4 + y^4, x>0, y>0.

Programs

  • PARI
    issemi(n)=bigomega(n)==2
    list(lim)=my(v=List(),t);for(x=1,(lim+.5)^(1/4),for(y=1,min(x,(lim-x^4 + .5)^(1/4)),if(issemi(t=x^4+y^4),listput(v,t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Apr 22 2012

Formula

A001358 INTERSECTION A003336.

Extensions

a(12)-a(40) from Charles R Greathouse IV, Apr 22 2012

A250717 Primes of the form 4^x + y^4 with x, y > 0.

Original entry on oeis.org

5, 17, 97, 257, 337, 641, 881, 2417, 2657, 4177, 4721, 6577, 10657, 14657, 14897, 28817, 54721, 65537, 65617, 66161, 80177, 83537, 83777, 130337, 134417, 149057, 260017, 279857, 280097, 283937, 394721, 531457, 596977, 1049201, 1050977, 1055137, 1178897
Offset: 1

Views

Author

Vincenzo Librandi, Nov 27 2014

Keywords

Comments

Subsequence of A250481. Also, except for the first term, subsequence of A002645.

Examples

			257 is in this sequence because 4^4+1^4=257.
881 is in this sequence because 4^4+5^4=881.
		

Crossrefs

Cf. A250545.
Cf. similar sequences listed in A250481.

Programs

  • Mathematica
    f[x_, y_]:= 4^x + y^4; lst={}; Do[p=f[x, y]; If[PrimeQ[p], AppendTo[lst, p]], {y, 50}, {x, 50}]; Take[Union[lst], 50]

A282867 Primes of the form x^2 + y^2 with x > y such that x^2 - y^2 is a square and x^4 + y^4 is a prime.

Original entry on oeis.org

41, 313, 3593, 4481, 32633, 42961, 66361, 67073, 165233, 198593, 237161, 266921, 378953, 462073, 465041, 487073, 559001, 594161, 750353, 757633, 815401, 1157033, 1414081, 1416161, 1687393, 2439881, 2793481, 2866121, 2947561, 3344161, 3577913, 3759713, 4295281, 4617073, 4795481, 5654641
Offset: 1

Views

Author

Thomas Ordowski and Altug Alkan, Feb 23 2017

Keywords

Comments

Primes of the form (u^4 + v^4)/2 with u and v odd and (u^8 + 6*u^4*v^4 + v^8)/8 prime. - Robert Israel, Feb 24 2017

Examples

			For prime 41 = 5^2 + 4^2 is 5^2 - 4^2 = 3^2 and 5^4 + 4^4 = 881 is prime.
		

Crossrefs

Subsequence of A002646.

Programs

  • Maple
    N:= 10^7: # to get all terms <= N Res:= {}:
    for w from 1 to floor((2*N)^(1/4)) by 2 do
      for u from 1 to min(w-1, floor((2*N-w^4)^(1/4))) by 2 do
        p:= (u^4 + w^4)/2;
        if isprime(p) and isprime((u^8 + 6*u^4*w^4 + w^8)/8) then
          Res:= Res union {p}
        fi;
    od od:
    sort(convert(Res,list)); # Robert Israel, Feb 24 2017
  • Mathematica
    Select[Total[#^2]&/@Select[Subsets[Range[3000],{2}],IntegerQ[Sqrt[#[[2]]^2-#[[1]]^2]] && PrimeQ[ Total[#^4]]&],PrimeQ]//Union (* Harvey P. Dale, Jul 23 2024 *)

Formula

a(n) == 1 (mod 8).
a(n) == 1 or 33 (mod 40).
Previous Showing 11-20 of 22 results. Next