A302695
Number of 6-cycles in the (n+5)-path complement graph.
Original entry on oeis.org
0, 5, 50, 265, 996, 2985, 7610, 17185, 35320, 67341, 120770, 205865, 336220, 529425, 807786, 1199105, 1737520, 2464405, 3429330, 4691081, 6318740, 8392825, 11006490, 14266785, 18295976, 23232925, 29234530, 36477225, 45158540, 55498721, 67742410, 82160385, 99051360
Offset: 0
Cf.
A000292 (3-cycles of \bar P_{n+4}),
A002817 (4-cycles of \bar P_{n+4}),
A060446 (5-cycles of \bar P_{n+3}).
-
Table[n (4 + 22 n + 17 n^2 + 13 n^3 + 3 n^4 + n^5)/12, {n, 0, 20}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {5, 50, 265, 996, 2985, 7610, 17185}, {0, 20}]
CoefficientList[Series[x (-5 - 15 x - 20 x^2 - 16 x^3 - 3 x^4 - x^5)/(-1 + x)^7, {x, 0, 20}], x]
-
a(n) = n*(4+22*n+17*n^2+13*n^3+3*n^4+n^5)/12; \\ Altug Alkan, Apr 12 2018
A321244
Non-isomorphic proper colorings of the 3 X 3 grid graph using at most n colors under rotational and reflectional symmetries.
Original entry on oeis.org
0, 2, 69, 1572, 19865, 153480, 830802, 3476144, 12003462, 35757630, 94780235, 228579252, 509929719, 1065625652, 2106541920, 3969848640, 7176749852, 12509692794, 21113614017, 34626453860, 55344881445, 86431928352, 132174030494, 198295824432, 292341936450, 424135940150, 606327641127, 855040875444, 1190635082147, 1638595028940
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Marko Riedel et al., Tree graphs colorings, Math StackExchange, December 2017.
- Marko Riedel et al., 3-colourings of a 3×3 table with one of 3 colors up to symmetries, Math StackExchange, October 2018.
- Marko Riedel, Maple code for OCP computation by Burnside.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
[(1/8)*n^9-(3/2)*n^8+(33/4)*n^7-(53/2)*n^6+(217/4)*n^5-(291/4)*n^4 +(507/8)*n^3-(133/4)*n^2+8*n: n in [1..30]]; // Vincenzo Librandi, Nov 04 2018
-
CoefficientList[Series[x (2 + 49 x + 972 x^2 + 7010 x^3 + 17710 x^4 + 15273 x^5 + 4076 x^6 + 268 x^7) / (1 - x)^10, {x, 0, 30}], x] (* Vincenzo Librandi Nov 04 2018 *)
-
concat(0, Vec(x^2*(2 + 49*x + 972*x^2 + 7010*x^3 + 17710*x^4 + 15273*x^5 + 4076*x^6 + 268*x^7) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Nov 01 2018
A047489
Numbers that are congruent to {1, 2, 3, 5, 7} mod 8.
Original entry on oeis.org
1, 2, 3, 5, 7, 9, 10, 11, 13, 15, 17, 18, 19, 21, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 39, 41, 42, 43, 45, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 63, 65, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 87, 89
Offset: 1
A125777
Moessner triangle based on A000217.
Original entry on oeis.org
1, 3, 6, 13, 28, 21, 69, 161, 137, 55, 433, 1078, 1017, 477, 120, 3141, 8245, 8437, 4460, 1337, 231, 25873, 71008, 77620, 45058, 15415, 3220, 406, 238629, 680451, 786012, 492264, 186729, 44955, 6930, 666, 2436673, 7184170, 8699205, 5804448, 2394150
Offset: 1
First few rows of the triangle are as follows:
1;
3, 6;
13, 28, 21;
69, 161, 137, 55;
433, 1078, 1017, 477, 120;
...
- J. H. Conway and R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, p. 64.
- Joshua Zucker, Table of n, a(n) for n = 1..55
- G. S. Kazandzidis, On a conjecture of Moessner and a general problem, Bull. Soc. Math. Grèce (N.S.) 2 (1961), 23-30.
- Dexter Kozen and Alexandra Silva, On Moessner's theorem, Amer. Math. Monthly 120(2) (2013), 131-139.
- Calvin T. Long, Strike it out--add it up, Math. Gaz. 66 (438) (1982), 273-277.
- Alfred Moessner, Eine Bemerkung über die Potenzen der natürlichen Zahlen, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 29, 1951.
- M. Niqui and J. J. M. M. Rutten, A proof of Moessner's theorem by coinduction, High.-Order Symb. Comput. 24(3) (2011), 191-206.
- Oskar Perron, Beweis des Moessnerschen Satzes, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 31-34, 1951.
A178238
Triangle read by rows: partial column sums of the triangle of natural numbers (written sequentially by rows).
Original entry on oeis.org
1, 3, 3, 7, 8, 6, 14, 16, 15, 10, 25, 28, 28, 24, 15, 41, 45, 46, 43, 35, 21, 63, 68, 70, 68, 61, 48, 28, 92, 98, 101, 100, 94, 82, 63, 36, 129, 136, 140, 140, 135, 124, 106, 80, 45, 175, 183, 188, 189, 185, 175, 158, 133, 99, 55, 231, 240, 246, 248, 245, 236, 220, 196, 163, 120, 66
Offset: 1
First few rows of the triangle:
1;
3, 3;
7, 8, 6;
14, 16, 15, 10;
25, 28, 28, 24, 15;
41, 45, 46, 43, 35, 21;
63, 68, 70, 68, 61, 48, 28;
92, 98, 101, 100, 94, 82, 63, 36;
129, 136, 140, 140, 135, 124, 106, 80, 45;
175, 183, 188, 189, 185, 175, 158, 133, 99, 55;
231, 240, 246, 248, 245, 236, 220, 196, 163, 120, 66;
298, 308, 314, 318, 316, 308, 293, 270, 238, 196, 143, 78;
...
These are the partial sums of the columns of the triangle:
1;
2, 3;
4, 5, 6;
7, 8, 9, 10;
...
For example, T(4,2) = 3 + 5 + 8 = 16.
-
T(n,k) = {binomial(n+1, 3) - binomial(k, 3) + k*(n-k+1)}
{ for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) } \\ Andrew Howroyd, Apr 18 2021
Name changed and terms a(56) and beyond from
Andrew Howroyd, Apr 18 2021
A259473
Irregular triangle read by rows of coefficients arising in the enumeration of doubly stochastic matrices of integers, n >= 1, 0 <= k <= (n-1)*(n-2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 14, 87, 148, 87, 14, 1, 1, 103, 4306, 63110, 388615, 1115068, 1575669, 1115068, 388615, 63110, 4306, 103, 1, 1, 694, 184015, 15902580, 567296265, 9816969306, 91422589980, 490333468494, 1583419977390, 3166404385990, 3982599815746, 3166404385990
Offset: 1
Triangle begins:
1;
1;
1,1,1;
1,14,87,148,87,14,1;
1,103,4306,63110,388615,1115068,1575669,1115068,388615,63110,4306,103,1;
...
- Andrew Howroyd, Table of n, a(n) for n = 1..177 (rows 1..9)
- D. M. Jackson and G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4 (1975), 474-477, doi:10.1137/0204040.
- D. M. Jackson & G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4.4 (1975), 474-477. (Annotated scanned copy)
a(1)=1 prepended and terms a(26) and beyond from
Andrew Howroyd, Apr 11 2020
A264891
a(n) = n*(5*n - 3)*(25*n^2 - 15*n - 6)/8.
Original entry on oeis.org
0, 1, 112, 783, 2839, 7480, 16281, 31192, 54538, 89019, 137710, 204061, 291897, 405418, 549199, 728190, 947716, 1213477, 1531548, 1908379, 2350795, 2865996, 3461557, 4145428, 4925934, 5811775, 6812026, 7936137, 9193933, 10595614, 12151755, 13873306
Offset: 0
-
[n*(5*n-3)*(25*n^2-15*n-6)/8: n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
-
seq(n*(5*n - 3)*(25*n^2 - 15*n - 6)/8, n=0..100); # Robert Israel, Dec 02 2015
-
Table[n (5 n - 3) (25 n^2 - 15 n - 6)/8, {n, 0, 35}]
LinearRecurrence[{5,-10,10,-5,1},{0,1,112,783,2839},40] (* Harvey P. Dale, Nov 19 2019 *)
-
vector(100, n, n--; n*(5*n-3)*(25*n^2-15*n-6)/8) \\ Altug Alkan, Nov 27 2015
A264892
a(n) = n*(3*n - 2)*(9*n^2 - 6*n - 2).
Original entry on oeis.org
0, 1, 176, 1281, 4720, 12545, 27456, 52801, 92576, 151425, 234640, 348161, 498576, 693121, 939680, 1246785, 1623616, 2080001, 2626416, 3273985, 4034480, 4920321, 5944576, 7120961, 8463840, 9988225, 11709776, 13644801, 15810256, 18223745, 20903520
Offset: 0
-
[n*(3*n-2)*(9*n^2-6*n-2): n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
-
Table[n (3 n - 2) (9 n^2 - 6 n - 2), {n, 0, 30}]
-
concat(0, Vec(x*(1+171*x+411*x^2+65*x^3)/(1-x)^5 + O(x^100))) \\ Altug Alkan, Nov 27 2015
A294259
a(n) = n*(n^3 + 2*n^2 - 5*n + 10)/8.
Original entry on oeis.org
0, 1, 4, 15, 43, 100, 201, 364, 610, 963, 1450, 2101, 2949, 4030, 5383, 7050, 9076, 11509, 14400, 17803, 21775, 26376, 31669, 37720, 44598, 52375, 61126, 70929, 81865, 94018, 107475, 122326, 138664, 156585, 176188, 197575, 220851, 246124, 273505, 303108, 335050, 369451
Offset: 0
After 0:
1 = -(0) + (1);
4 = -(0 + 1) + (2 + 2*3/2);
15 = -(0 + 1 + 2) + (3 + 4 + 5 + 3*4/2);
43 = -(0 + 1 + 2 + 3) + (4 + 5 + 6 + 7 + 8 + 9 + 4*5/2);
100 = -(0 + 1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 14 + 5*6/2);
201 = -(0 + 1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 20 + 6*7/2), etc.
Cf.
A101374: the sums in the Example section end in squares.
-
List([0..50], n -> n*(n^3+2*n^2-5*n+10)/8);
-
[n*(n^3+2*n^2-5*n+10)/8: n in [0..50]];
-
a := n -> n*(n*(n*(n+2)-5)+10)/8: seq(a(n),n=0..41); # Peter Luschny, Nov 06 2017
-
Table[n (n^3 + 2 n^2 - 5 n + 10)/8, {n, 0, 50}]
LinearRecurrence[{5,-10,10,-5,1},{0,1,4,15,43},50] (* Harvey P. Dale, Jan 08 2024 *)
-
makelist(n*(n^3+2*n^2-5*n+10)/8, n, 0, 50);
-
vector(50, n, n--; n*(n^3+2*n^2-5*n+10)/8)
-
[n*(n^3+2*n^2-5*n+10)/8 for n in range(50)]
A321245
Non-isomorphic proper colorings of the 4 X 4 grid graph using at most n colors under rotational and reflectional symmetries.
Original entry on oeis.org
0, 1, 1155, 759759, 103786510, 4767856260, 107118740001, 1465350136810, 13956101513964, 100946621623995, 588405869207695, 2882842751900001, 12245455022841690, 46164185630256694, 157281327978056205, 491245336843482180, 1422828159652548376, 3857444027819847045, 9864873410828916699, 23951146853875652515, 55509091777214287590
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.
Comments