cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 69 results. Next

A302695 Number of 6-cycles in the (n+5)-path complement graph.

Original entry on oeis.org

0, 5, 50, 265, 996, 2985, 7610, 17185, 35320, 67341, 120770, 205865, 336220, 529425, 807786, 1199105, 1737520, 2464405, 3429330, 4691081, 6318740, 8392825, 11006490, 14266785, 18295976, 23232925, 29234530, 36477225, 45158540, 55498721, 67742410, 82160385, 99051360
Offset: 0

Views

Author

Eric W. Weisstein, Apr 11 2018

Keywords

Crossrefs

Cf. A000292 (3-cycles of \bar P_{n+4}), A002817 (4-cycles of \bar P_{n+4}), A060446 (5-cycles of \bar P_{n+3}).

Programs

  • Mathematica
    Table[n (4 + 22 n + 17 n^2 + 13 n^3 + 3 n^4 + n^5)/12, {n, 0, 20}]
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {5, 50, 265, 996, 2985, 7610, 17185}, {0, 20}]
    CoefficientList[Series[x (-5 - 15 x - 20 x^2 - 16 x^3 - 3 x^4 - x^5)/(-1 + x)^7, {x, 0, 20}], x]
  • PARI
    a(n) = n*(4+22*n+17*n^2+13*n^3+3*n^4+n^5)/12; \\ Altug Alkan, Apr 12 2018

Formula

G.f.: x*(-5 - 15*x - 20*x^2 - 16*x^3 - 3*x^4 - x^5)/(-1 + x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
a(n) = n*(4 + 22*n + 17*n^2 + 13*n^3 + 3*n^4 + n^5)/12.

A321244 Non-isomorphic proper colorings of the 3 X 3 grid graph using at most n colors under rotational and reflectional symmetries.

Original entry on oeis.org

0, 2, 69, 1572, 19865, 153480, 830802, 3476144, 12003462, 35757630, 94780235, 228579252, 509929719, 1065625652, 2106541920, 3969848640, 7176749852, 12509692794, 21113614017, 34626453860, 55344881445, 86431928352, 132174030494, 198295824432, 292341936450, 424135940150, 606327641127, 855040875444, 1190635082147, 1638595028940
Offset: 1

Views

Author

Marko Riedel, Nov 01 2018

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Programs

  • Magma
    [(1/8)*n^9-(3/2)*n^8+(33/4)*n^7-(53/2)*n^6+(217/4)*n^5-(291/4)*n^4 +(507/8)*n^3-(133/4)*n^2+8*n: n in [1..30]]; // Vincenzo Librandi, Nov 04 2018
  • Mathematica
    CoefficientList[Series[x (2 + 49 x + 972 x^2 + 7010 x^3 + 17710 x^4 + 15273 x^5 + 4076 x^6 + 268 x^7) / (1 - x)^10, {x, 0, 30}], x] (* Vincenzo Librandi Nov 04 2018 *)
  • PARI
    concat(0, Vec(x^2*(2 + 49*x + 972*x^2 + 7010*x^3 + 17710*x^4 + 15273*x^5 + 4076*x^6 + 268*x^7) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Nov 01 2018
    

Formula

a(n) = (1/8)*n^9 - (3/2)*n^8 + (33/4)*n^7 - (53/2)*n^6 + (217/4)*n^5 - (291/4)*n^4 + (507/8)*n^3 - (133/4)*n^2 + 8*n.
From Colin Barker, Nov 01 2018: (Start)
G.f.: x^2*(2 + 49*x + 972*x^2 + 7010*x^3 + 17710*x^4 + 15273*x^5 + 4076*x^6 + 268*x^7) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)

A047489 Numbers that are congruent to {1, 2, 3, 5, 7} mod 8.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 11, 13, 15, 17, 18, 19, 21, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 39, 41, 42, 43, 45, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 63, 65, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 87, 89
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that A002817(n) is divisible by n. [Bruno Berselli, Dec 11 2013]

Crossrefs

Cf. A002817.

Formula

G.f.: x*(x+1)*(x^4+x^3+x^2+1)/((x-1)^2*(x^4+x^3+x^2+x+1)). [Colin Barker, Jun 22 2012]

A125777 Moessner triangle based on A000217.

Original entry on oeis.org

1, 3, 6, 13, 28, 21, 69, 161, 137, 55, 433, 1078, 1017, 477, 120, 3141, 8245, 8437, 4460, 1337, 231, 25873, 71008, 77620, 45058, 15415, 3220, 406, 238629, 680451, 786012, 492264, 186729, 44955, 6930, 666, 2436673, 7184170, 8699205, 5804448, 2394150
Offset: 1

Views

Author

Gary W. Adamson, Dec 07 2006

Keywords

Comments

Begin with the triangular numbers A000217 and circle every T(k)-th term, getting the doubly triangular numbers, A002817. Per instructions shown in A125714, take partial sums of the uncircled terms in row 1, denoting this as row 2. Circle the row 2 terms which are one place to the left of row 1 terms. Take partial sums again in analogous operations for subsequent rows.
Left border = A104989: (1, 3, 13, 69, 433...). Right border = the doubly triangular numbers starting (1, 6, 21...): A002817.

Examples

			First few rows of the triangle are as follows:
    1;
    3,    6;
   13,   28,   21;
   69,  161,  137,  55;
  433, 1078, 1017, 477, 120;
  ...
		

References

  • J. H. Conway and R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, p. 64.

Crossrefs

Extensions

More terms from Joshua Zucker, Jun 17 2007

A178238 Triangle read by rows: partial column sums of the triangle of natural numbers (written sequentially by rows).

Original entry on oeis.org

1, 3, 3, 7, 8, 6, 14, 16, 15, 10, 25, 28, 28, 24, 15, 41, 45, 46, 43, 35, 21, 63, 68, 70, 68, 61, 48, 28, 92, 98, 101, 100, 94, 82, 63, 36, 129, 136, 140, 140, 135, 124, 106, 80, 45, 175, 183, 188, 189, 185, 175, 158, 133, 99, 55, 231, 240, 246, 248, 245, 236, 220, 196, 163, 120, 66
Offset: 1

Views

Author

Gary W. Adamson, May 23 2010

Keywords

Comments

T(n,k) is the n-th partial sum of the k-th column of the triangle of natural numbers.

Examples

			First few rows of the triangle:
    1;
    3,   3;
    7,   8,   6;
   14,  16,  15,  10;
   25,  28,  28,  24,  15;
   41,  45,  46,  43,  35,  21;
   63,  68,  70,  68,  61,  48,  28;
   92,  98, 101, 100,  94,  82,  63,  36;
  129, 136, 140, 140, 135, 124, 106,  80,  45;
  175, 183, 188, 189, 185, 175, 158, 133,  99,  55;
  231, 240, 246, 248, 245, 236, 220, 196, 163, 120,  66;
  298, 308, 314, 318, 316, 308, 293, 270, 238, 196, 143, 78;
  ...
These are the partial sums of the columns of the triangle:
  1;
  2, 3;
  4, 5, 6;
  7, 8, 9, 10;
  ...
For example, T(4,2) = 3 + 5 + 8 = 16.
		

Crossrefs

Column 1 is A004006.
Main diagonal is A000217.
Row sums are A002817.

Programs

  • PARI
    T(n,k) = {binomial(n+1, 3) - binomial(k, 3) + k*(n-k+1)}
    { for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) } \\ Andrew Howroyd, Apr 18 2021

Formula

As infinite lower triangular matrices, A000012 * A000027.
From Andrew Howroyd, Apr 18 2021: (Start)
T(n,k) = Sum_{j=k..n} (k + j*(j-1)/2).
T(n,k) = binomial(n+1, 3) - binomial(k, 3) + k*(n-k+1).
T(2*n, n) = A255211(n).
(End)

Extensions

Name changed and terms a(56) and beyond from Andrew Howroyd, Apr 18 2021

A259473 Irregular triangle read by rows of coefficients arising in the enumeration of doubly stochastic matrices of integers, n >= 1, 0 <= k <= (n-1)*(n-2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 14, 87, 148, 87, 14, 1, 1, 103, 4306, 63110, 388615, 1115068, 1575669, 1115068, 388615, 63110, 4306, 103, 1, 1, 694, 184015, 15902580, 567296265, 9816969306, 91422589980, 490333468494, 1583419977390, 3166404385990, 3982599815746, 3166404385990
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

The n-th row of A257493 is a polynomial of degree (n-1)^2. This triangle gives the coefficients of the numerator of the generating functions for A257493 with denominators being (1-x)^(1+(n-1)^2). - Andrew Howroyd, Apr 11 2020

Examples

			Triangle begins:
  1;
  1;
  1,1,1;
  1,14,87,148,87,14,1;
  1,103,4306,63110,388615,1115068,1575669,1115068,388615,63110,4306,103,1;
  ...
		

Crossrefs

Row sums are A037302.

Formula

T(n,k) = Sum_{i=0..k} A257493(n, k-i)*(-1)^i*binomial(1+(n-1)^2,i). - Andrew Howroyd, Apr 11 2020

Extensions

a(1)=1 prepended and terms a(26) and beyond from Andrew Howroyd, Apr 11 2020

A264891 a(n) = n*(5*n - 3)*(25*n^2 - 15*n - 6)/8.

Original entry on oeis.org

0, 1, 112, 783, 2839, 7480, 16281, 31192, 54538, 89019, 137710, 204061, 291897, 405418, 549199, 728190, 947716, 1213477, 1531548, 1908379, 2350795, 2865996, 3461557, 4145428, 4925934, 5811775, 6812026, 7936137, 9193933, 10595614, 12151755, 13873306
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly heptagonal numbers.

Crossrefs

Programs

  • Magma
    [n*(5*n-3)*(25*n^2-15*n-6)/8: n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Maple
    seq(n*(5*n - 3)*(25*n^2 - 15*n - 6)/8, n=0..100); # Robert Israel, Dec 02 2015
  • Mathematica
    Table[n (5 n - 3) (25 n^2 - 15 n - 6)/8, {n, 0, 35}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,112,783,2839},40] (* Harvey P. Dale, Nov 19 2019 *)
  • PARI
    vector(100, n, n--; n*(5*n-3)*(25*n^2-15*n-6)/8) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 107*x + 233*x^2 + 34*x^3)/(1 - x)^5.
a(n) = A000566(A000566(n)).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 28 2015
Sum_{n>0} 1/a(n) = (4*(sqrt(33)*gamma + sqrt(33)*polygamma(0, 2/5) - 3*polygamma(0, (1/10)*(7 - sqrt(33))) + 3 polygamma(0, (1/10)* (7 + sqrt(33)))))/(9*sqrt(33)) = 1.0108420043...., where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.
E.g.f.: x*(8 + 440*x + 600*x^2 + 125*x^3)*exp(x)/8, - Robert Israel, Dec 02 2015

A264892 a(n) = n*(3*n - 2)*(9*n^2 - 6*n - 2).

Original entry on oeis.org

0, 1, 176, 1281, 4720, 12545, 27456, 52801, 92576, 151425, 234640, 348161, 498576, 693121, 939680, 1246785, 1623616, 2080001, 2626416, 3273985, 4034480, 4920321, 5944576, 7120961, 8463840, 9988225, 11709776, 13644801, 15810256, 18223745, 20903520
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly octagonal numbers.

Crossrefs

Programs

  • Magma
    [n*(3*n-2)*(9*n^2-6*n-2): n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Mathematica
    Table[n (3 n - 2) (9 n^2 - 6 n - 2), {n, 0, 30}]
  • PARI
    concat(0, Vec(x*(1+171*x+411*x^2+65*x^3)/(1-x)^5 + O(x^100))) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 171*x + 411*x^2 + 65*x^3)/(1 - x)^5.
a(n) = A000567(A000567(n)).
Sum_{n>0} 1/a(n) = (sqrt(3)*gamma + sqrt(3)*polygamma(0, 1/3) - polygamma(0, (1/3)*(2 - sqrt(3))) + polygamma(0, (1/3)*(2 + sqrt(3))))/(4*sqrt(3)) = 1.006842786293...,where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.

A294259 a(n) = n*(n^3 + 2*n^2 - 5*n + 10)/8.

Original entry on oeis.org

0, 1, 4, 15, 43, 100, 201, 364, 610, 963, 1450, 2101, 2949, 4030, 5383, 7050, 9076, 11509, 14400, 17803, 21775, 26376, 31669, 37720, 44598, 52375, 61126, 70929, 81865, 94018, 107475, 122326, 138664, 156585, 176188, 197575, 220851, 246124, 273505, 303108, 335050, 369451
Offset: 0

Views

Author

Bruno Berselli, Oct 30 2017

Keywords

Comments

a(n) is even for n in A047481.
Also, a(n) is divisible by 5 if and only if n belongs to A047218.

Examples

			After 0:
1   =                     -(0) + (1);
4   =                 -(0 + 1) + (2 + 2*3/2);
15  =             -(0 + 1 + 2) + (3 + 4 + 5 + 3*4/2);
43  =         -(0 + 1 + 2 + 3) + (4 + 5 + 6 + 7 + 8 + 9 + 4*5/2);
100 =     -(0 + 1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 14 + 5*6/2);
201 = -(0 + 1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 20 + 6*7/2), etc.
		

Crossrefs

Cf. A101374: the sums in the Example section end in squares.
Subsequence of A047207.

Programs

  • GAP
    List([0..50], n -> n*(n^3+2*n^2-5*n+10)/8);
  • Magma
    [n*(n^3+2*n^2-5*n+10)/8: n in [0..50]];
    
  • Maple
    a := n -> n*(n*(n*(n+2)-5)+10)/8: seq(a(n),n=0..41); # Peter Luschny, Nov 06 2017
  • Mathematica
    Table[n (n^3 + 2 n^2 - 5 n + 10)/8, {n, 0, 50}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,4,15,43},50] (* Harvey P. Dale, Jan 08 2024 *)
  • Maxima
    makelist(n*(n^3+2*n^2-5*n+10)/8, n, 0, 50);
    
  • PARI
    vector(50, n, n--; n*(n^3+2*n^2-5*n+10)/8)
    
  • Sage
    [n*(n^3+2*n^2-5*n+10)/8 for n in range(50)]
    

Formula

O.g.f.: x*(1 - x + 5*x^2 - 2*x^3)/(1 - x)^5.
E.g.f.: x*(8 + 8*x + 8*x^2 + x^3)*exp(x)/8.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
a(n) = 2*n + Sum_{i=0..n} i*(i^2 - 3)/2.

A321245 Non-isomorphic proper colorings of the 4 X 4 grid graph using at most n colors under rotational and reflectional symmetries.

Original entry on oeis.org

0, 1, 1155, 759759, 103786510, 4767856260, 107118740001, 1465350136810, 13956101513964, 100946621623995, 588405869207695, 2882842751900001, 12245455022841690, 46164185630256694, 157281327978056205, 491245336843482180, 1422828159652548376, 3857444027819847045, 9864873410828916699, 23951146853875652515, 55509091777214287590
Offset: 1

Views

Author

Marko Riedel, Nov 01 2018

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

a(n) = (1/8)*n^16 - 3*n^15 + (69/2)*n^14 - (2015/8)*n^13 + (10437/8)*n^12 - (20307/4)*n^11 + 15333*n^10 - (292907/8)*n^9 + (557915/8)*n^8 - (848501/8)*n^7 + (1023195/8)*n^6 - (240539/2)*n^5 + (683997/8)*n^4 - (347485/8)*n^3 + (112831/8)*n^2 - (8807/4)*n.
Previous Showing 51-60 of 69 results. Next