cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A337907 The number of walks of n steps on the hexagonal lattice that start at the origin and end at the non-adjacent vertex (3/2,sqrt(3)/2).

Original entry on oeis.org

2, 6, 48, 220, 1320, 6930, 39200, 215208, 1208340, 6754440, 38076192, 214939296, 1218641424, 6925848930, 39477746880, 225542306704, 1291514481972, 7410367503396, 42599109627360, 245305128355560, 1414839151645920, 8172376003368720, 47270088643265280, 273766119948648000
Offset: 2

Views

Author

R. J. Mathar, Sep 29 2020

Keywords

Examples

			There are a(2)=2 paths with 2 steps: RU and UR, where R=(1,0), L=(-1,0), U=(1/2,sqrt(3)/2), u=(-1/2,sqrt(3)/2), D=(1/2,-sqrt(3)/2), d=(-1/2,-sqrt(3)/2).
There are a(3)=6 paths with 3 steps: UUD, UDU, DUU, RRu, RuR, uRR.
		

Crossrefs

Cf. A002898 (returns to origin), A337905, A337906.

Programs

Formula

D-finite with recurrence -(n-2)*(n+3)*(n+2)*(n+1)*a(n) +n*(n+2)*(n^2+n+12)*a(n-1) +24*n*(n-1)*(n^2+3*n-1)*a(n-2) +36*n*(n-1)*(n-2)*(n+4)*a(n-3)=0.

A094060 Number of walks of length n on hexagonal grid that start and end at the origin. Intermediate returns to the origin are not permitted.

Original entry on oeis.org

1, 0, 6, 12, 54, 216, 1032, 4896, 24606, 125040, 651348, 3432168, 18331992, 98814816, 537343632, 2942475552, 16214888286, 89835783264, 500116783740, 2795958732024, 15690597591636, 88354191756816, 499060719941616, 2826794871554112, 16052536475622792
Offset: 0

Views

Author

Gareth McCaughan, Jun 10 2004

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, [1,0,6][n+1], ((n-1)*
          n*b(n-1) +24*(n-1)^2*b(n-2) +36*(n-1)*(n-2)*b(n-3))/n^2)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          b(n)-add(a(n-i)*b(i), i=1..n-1))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Dec 07 2020
  • Mathematica
    b[n_] := b[n] = If[n<3, {1, 0, 6}[[n+1]], ((n-1)n b[n-1] + 24(n-1)^2* b[n-2] + 36(n-1)(n-2) b[n-3])/n^2];
    a[n_] := a[n] = If[n==0, 1, b[n] - Sum[a[n-i] b[i], {i, 1, n-1}]];
    a /@ Range[0, 23] (* Jean-François Alcover, Jan 14 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(g=sum(m=0, n, (3*m)!/m!^3*x^(2*m)*(1+2*x)^m, O(x*x^n))); Vec(2-1/g)} \\ Andrew Howroyd, Aug 09 2025

Formula

INVERTi transform of A002898. - R. J. Mathar, Sep 29 2020

A242743 Decimal expansion of an Ising constant related to the random coloring problem.

Original entry on oeis.org

9, 2, 9, 6, 9, 5, 3, 9, 8, 3, 4, 1, 6, 1, 0, 2, 1, 4, 9, 8, 5, 3, 8, 4, 9, 7, 3, 6, 6, 5, 8, 7, 8, 1, 2, 1, 7, 6, 5, 8, 8, 2, 3, 7, 5, 1, 5, 1, 8, 0, 2, 1, 6, 7, 5, 8, 2, 3, 4, 3, 1, 4, 2, 9, 7, 0, 1, 9, 2, 0, 8, 4, 7, 4, 5, 7, 2, 5, 0, 8, 1, 2, 5, 6, 1, 8, 5, 3, 1, 2, 1, 0, 4, 4, 7, 7, 4, 6, 1, 5, 8, 8, 9, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 02 2014

Keywords

Comments

In Ising model on the 2D square lattice, the negated ratio of free energy per node to the temperature at the critical point. - Andrey Zabolotskiy, Sep 12 2017

Examples

			0.929695398341610214985384973665878...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.22 Lenz-Ising constants, p. 399.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Log(2)/2 + 2*Catalan(R)/Pi(R); // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[Log[2]/2 + 2*Catalan/Pi, 10, 105] // First
  • PARI
    default(realprecision, 100); log(2)/2 + 2*Catalan/Pi \\ G. C. Greubel, Aug 25 2018
    

Formula

log(2)/2 + 2*G/Pi = log(2)/2 + A218387/2, where G is Catalan's constant.

A292881 Number of n-step closed paths on the E6 lattice.

Original entry on oeis.org

1, 0, 72, 1440, 54216, 2134080, 93993120, 4423628160, 219463602120, 11341793393280
Offset: 0

Views

Author

Samuel Savitz, Sep 26 2017

Keywords

Comments

Calculated by brute force computational enumeration.
The moments of the imaginary part of the suitably normalized E6 lattice Green's function.

Examples

			The 2-step walks consist of hopping to one of the 72 minimal vectors of the E6 lattice and then back to the origin.
		

Crossrefs

Cf. A126869 (Linear A1 lattice), A002898 (Hexagonal A2), A002899 (FCC A3), A271432 (D4), A271650 (D5), A271651 (D6), A292882 (E7), A271670 (D7), A292883 (E8), A271671 (D8).

Formula

Summed combinatorial expressions and recurrence relations for this sequence exist, but have not been determined. These would allow one to write a differential equation or hypergeometric expression for the E6 lattice Green's function.

A292882 Number of n-step closed paths on the E7 lattice.

Original entry on oeis.org

1, 0, 126, 4032, 228690, 14394240, 1020623940, 78353170560, 6393827197170
Offset: 0

Views

Author

Samuel Savitz, Sep 26 2017

Keywords

Comments

Calculated by brute force computational enumeration.
The moments of the imaginary part of the suitably normalized E7 lattice Green's function.

Examples

			The 2-step walks consist of hopping to one of the 126 minimal vectors of the E7 lattice and then back to the origin.
		

Crossrefs

Cf. A126869 (Linear A1 lattice), A002898 (Hexagonal A2), A002899 (FCC A3), A271432 (D4), A271650 (D5), A292881 (E6), A271651 (D6), A271670 (D7), A292883 (E8), A271671 (D8).

Formula

Summed combinatorial expressions and recurrence relations for this sequence exist, but have not been determined. These would allow one to write a differential equation or hypergeometric expression for the E7 lattice Green's function.

A292883 Number of n-step closed paths on the E8 lattice.

Original entry on oeis.org

1, 0, 240, 13440, 1260720, 137813760, 17141798400, 2336327078400, 341350907713200
Offset: 0

Views

Author

Samuel Savitz, Sep 26 2017

Keywords

Comments

Calculated by brute force computational enumeration.
The moments of the imaginary part of the suitably normalized E8 lattice Green's function.

Examples

			The 2-step walks consist of hopping to one of the 240 minimal vectors of the E8 lattice and then back to the origin.
		

Crossrefs

Cf. A126869 (Linear A1 lattice), A002898 (Hexagonal A2), A002899 (FCC A3), A271432 (D4), A271650 (D5), A292881 (E6), A271651 (D6), A292882 (E7), A271670 (D7), A271671 (D8).

Formula

Summed combinatorial expressions and recurrence relations for this sequence exist, but have not been determined. These would allow one to write a differential equation or hypergeometric expression for the E8 lattice Green's function.

A328735 Constant term in the expansion of (x + y + z + 1/x + 1/y + 1/z + x*y + y*z + z*x + 1/(x*y) + 1/(y*z) + 1/(z*x) + x*y*z + 1/(x*y*z))^n.

Original entry on oeis.org

1, 0, 14, 72, 882, 8400, 95180, 1060080, 12389650, 146472480, 1767391164, 21581516880, 266718438756, 3327025429728, 41849031952728, 530135326392672, 6757845419895570, 86619827323917888, 1115719258312182524, 14434274832755201424, 187477238295444829732
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2019

Keywords

Crossrefs

Column k=4 of A328748.
Sum_{i=0..n} (-2)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^m: A126869 (m=2), A002898 (m=3), this sequence (m=4), A328751 (m=5).

Programs

  • Mathematica
    Table[Sum[(-2)^(n-i)*Binomial[n,i] * Sum[Binomial[i,j]^4, {j,0,i}], {i,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 20 2023 *)
  • PARI
    {a(n) = polcoef(polcoef(polcoef((-2+(1+x)*(1+y)*(1+z)+(1+1/x)*(1+1/y)*(1+1/z))^n, 0), 0), 0)}
    
  • PARI
    {a(n) = sum(i=0, n, (-2)^(n-i)*binomial(n, i)*sum(j=0, i, binomial(i, j)^4))}

Formula

a(n) = Sum_{i=0..n} (-2)^(n-i)*binomial(n,i)*Sum_{j=0..i} binomial(i,j)^4.
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: n^3*a(n) = 2*(n-1)*n*(2*n - 1)*a(n-1) + 112*(n-1)^3*a(n-2) + 184*(n-2)*(n-1)*(2*n - 3)*a(n-3) + 336*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 2^(n-4) * 7^(n + 3/2) / (Pi^(3/2) * n^(3/2)). (End)

A337906 The number of walks of n steps on the hexagonal lattice that start at the origin and end at the non-adjacent vertex (2,0).

Original entry on oeis.org

1, 6, 34, 200, 1095, 6230, 34636, 195552, 1099140, 6218520, 35210736, 200099328, 1139401263, 6504768270, 37211008120, 213311576192, 1225053737622, 7047867363108, 40612374024300, 234376628718960, 1354498970905080, 7838134441085520, 45412879702456800, 263417461793120000
Offset: 2

Views

Author

R. J. Mathar, Sep 29 2020

Keywords

Examples

			There is a(2)=1 path with 2 steps: RR, where R=(1,0), L=(-1,0), U=(1/2,sqrt(3)/2), u=(-1/2,sqrt(3)/2), D=(1/2,-sqrt(3)/2), d=(-1/2,-sqrt(3)/2).
There are a(3)=6 paths with 3 steps: RUD, RDU, DRU, DUR, URD, UDR.
		

Crossrefs

Cf. A002898 (returns to origin), A337905, A337907.

Programs

  • Maple
    # see A337905
  • Mathematica
    HexLat[n_, finx_, finy_] := Module[{a = 0, L, R}, For[L = 0, L <= n, L++, For[R = Mod[n + finy - L, 2], R <= n - L , R += 2, a = a + Binomial[n, L]*Binomial[n - L, R]*Binomial[n - L - R, n/2 + L/2 - 3*R/2 + finx]*Binomial[n - L - R, (n - L - R - finy)/2]]]; a];
    Table[HexLat[n, 2, 0], {n, 2, 25}] (* Jean-François Alcover, Jun 25 2023, after R. J. Mathar in A337905 *)

Formula

D-finite with recurrence (n-2)*(3*n^2-5*n-20)*(n+2)^2*a(n) -n*(3*n^4-2*n^3+n^2-130*n-208)*a(n-1) -24*n*(n-1)*(n-3)*(3*n^2+7*n-2)*a(n-2) -36*n*(n-1)*(n-2)*(3*n^2+n-22)*a(n-3)=0.
a(n) ~ 2^(n-1) * 3^(n + 1/2) / (Pi*n). - Vaclav Kotesovec, Apr 30 2024

A057648 Number of excursions of length n on the upper-right part of the hexagonal lattice.

Original entry on oeis.org

1, 0, 2, 2, 13, 34, 158, 594, 2665, 11558, 53320, 247488, 1181266, 5708884, 28049474, 139417402, 701063005, 3559326294, 18233244530, 94140532624, 489573775236, 2562613997512, 13493827469116, 71441865994904
Offset: 0

Views

Author

Cyril Banderier, Oct 12 2000

Keywords

Comments

Excursions = walks from the origin to the origin.
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice. - Sean A. Irvine, Jun 22 2022

Crossrefs

Programs

  • Maple
    gf:=(1-2*x)*hypergeom([-1/2, 1/2],[2],16*x^2/(1-2*x)^2)/(4*x^2) - (2*x+1)*((1-6*x)*hypergeom([1/3, 2/3],[2],27*x^2*(2*x+1))+1/2)/(6*x^2):
    S:= series(gf,x,103):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Dec 08 2014

Formula

G.f.: (1-2*x)*hypergeom([-1/2, 1/2],[2],16*x^2/(1-2*x)^2)/(4*x^2) - (2*x+1)*((1-6*x)*hypergeom([1/3, 2/3],[2],27*x^2*(2*x+1))+1/2)/(6*x^2). - Mark van Hoeij, Dec 08 2014
a(n) ~ (2*sqrt(3) - 3) * 2^n * 3^(n+2) / (Pi*n^3). - Vaclav Kotesovec, Apr 30 2024

Extensions

Title corrected by Sean A. Irvine, Jun 22 2022

A198802 Number of closed paths of length n whose steps are 18th roots of unity, U_18(n).

Original entry on oeis.org

1, 0, 18, 36, 918, 5400, 82800, 801360, 10907190, 132053040, 1802041668, 24199809480, 340640607384, 4834708246368, 70229958125184, 1032223723667136, 15391538570569590, 231935110984687968, 3531542904056225916, 54244559313713885688, 839979883121036697468
Offset: 0

Views

Author

Simon Plouffe, Oct 30 2011

Keywords

Comments

U_18(n), comment in article: For each m >= 1, the sequence (U_m(N)), N >= 0 is P-recursive but is not algebraic when m > 2.

Crossrefs

Programs

  • PARI
    seq(n)={Vec(serlaplace(sum(k=0, n, if(k,2,1)*(x^k*besseli(k, 2*x + O(x^(n-k+1)))/k!)^3)^3))} \\ Andrew Howroyd, Nov 01 2018

Formula

E.g.f.: g(x)^3 where g(x) is the e.g.f. of A002898.
a(n) ~ 2^(n-3) * 3^(2*n + 9/2) / (Pi^3 * n^3). - Vaclav Kotesovec, Apr 30 2024
Previous Showing 11-20 of 26 results. Next