cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A134400 M * A007318, where M = triangle with (1, 1, 2, 3, ...) in the main diagonal and the rest zeros.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 3, 9, 9, 3, 4, 16, 24, 16, 4, 5, 25, 50, 50, 25, 5, 6, 36, 90, 120, 90, 36, 6, 7, 49, 147, 245, 245, 147, 49, 7, 8, 64, 224, 448, 560, 448, 224, 64, 8, 9, 81, 324, 756, 1134, 1134, 756, 324, 81, 9, 10, 100, 450, 1200, 2100, 2520, 2100, 1200, 450, 100, 10
Offset: 0

Views

Author

Gary W. Adamson, Oct 23 2007

Keywords

Comments

Row sums = A134401: (1, 2, 8, 24, 64, 160, 384, ...).
Triangle T(n,k), read by rows, given by [1,1,-1,1,0,0,0,0,0,...] DELTA [1,1,-1,1,0,0,0,0,0,...] where DELTA is the operator defined in A084938. A134402*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 26 2007
For n > 0, from n athletes, select a team of k players and then choose a coach who is allowed to be on the team or not. - Geoffrey Critzer, Mar 13 2010
Row sums are A036289 if first term changed to zero. Diagonal sums are A023610, starting with the 2nd diagonal. Partial sums of diagonals are A002940 if first term changed to zero. - John Molokach, Jul 06 2013
For n > 0, T(n,k) is the number of states in Sokoban puzzle with n non-obstacles cells and k boxes (see Russell and Norvig at page 157). - Stefano Spezia, Dec 03 2023

Examples

			First few rows of the triangle:
  1;
  1,  1;
  2,  4,   2;
  3,  9,   9,   3;
  4, 16,  24,  16,   4;
  5, 25,  50,  50,  25,   5;
  6, 36,  90, 120,  90,  36,  6;
  7, 49, 147, 245, 245, 147, 49, 7;
  ...
		

References

  • Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Fourth Edition, Hoboken: Pearson, 2021.

Crossrefs

T(2n,n) give A002011(n-1) for n>=1.

Programs

  • Maple
    with(combstruct): for n from 0 to 10 do seq(`if`(n=0, 1, n)* count( Combination(n), size=m), m=0..n) od; # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    Join[{1},Table[Table[n*Binomial[n, k], {k,0, n}], {n, 10}]] //Flatten (* Geoffrey Critzer, Mar 13 2010 adapted by Stefano Spezia, Dec 03 2023 *)

Formula

From Geoffrey Critzer, Mar 13 2010: (Start)
T(0,0) = 1 and T(n,k) = n * binomial(n,k) for n > 0.
E.g.f. for column k is: (x^k/k!)*exp(x)*(x+k). (End)
T(n,k) = A003506(n,k) + A003506(n,k-1). - Geoffrey Critzer, Mar 13 2010
G.f.: (1-x-x*y+x^2+x^2*y+x^2*y^2)/(1-2*x-2*x*y+x^2+2*x^2*y+x^2*y^2). - Philippe Deléham, Nov 14 2013
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) - T(n-2,k-2), T(0,0)=T(1,0)=T(1,1)=1, T(2,0)=T(2,2)=2, T(2,1)=4, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 14 2013
E.g.f.: 1 + exp(y*x)*exp(x)*(y*x + x). - Geoffrey Critzer, Mar 15 2015

Extensions

a(55)-a(65) from Stefano Spezia, Dec 03 2023

A062124 Fourth column of A046741.

Original entry on oeis.org

3, 26, 94, 234, 473, 838, 1356, 2054, 2959, 4098, 5498, 7186, 9189, 11534, 14248, 17358, 20891, 24874, 29334, 34298, 39793, 45846, 52484, 59734, 67623, 76178, 85426, 95394, 106109, 117598, 129888, 143006, 156979, 171834, 187598, 204298
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (6+19*n+18*n^2+9*n^3)/2); # G. C. Greubel, Jan 31 2019
  • Magma
    [(6+19*n+18*n^2+9*n^3)/2: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[(6+19*n+18*n^2+9*n^3)/2, {n,0,40}] (* G. C. Greubel, Jan 31 2019 *)
    LinearRecurrence[{4,-6,4,-1},{3,26,94,234},40] (* Harvey P. Dale, Feb 20 2022 *)
  • PARI
    vector(40, n, n--; (6+19*n+18*n^2+9*n^3)/2) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(6+19*n+18*n^2+9*n^3)/2 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (3 + 14*x + 8*x^2 + 2*x^3)/(1-x)^4. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y) - (1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (6 + 19*n + 18*n^2 + 9*n^3)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (6 + 46*x + 45*x^2 + 9*x^3)*exp(x)/2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A202874 Symmetric matrix based on (1,2,3,5,8,13,...), by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 5, 8, 8, 5, 8, 13, 14, 13, 8, 13, 21, 23, 23, 21, 13, 21, 34, 37, 39, 37, 34, 21, 34, 55, 60, 63, 63, 60, 55, 34, 55, 89, 97, 102, 103, 102, 97, 89, 55, 89, 144, 157, 165, 167, 167, 165, 157, 144, 89, 144, 233, 254, 267, 270, 272, 270, 267, 254
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2011

Keywords

Comments

Let s=(1,2,3,5,8,13,...)=(F(k+1)), where F=A000045, and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202874 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202875 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1....2....3....5....8....13
2....5....8....13...21...34
3....8....14...23...37...60
5....13...23...39...63...102
8....21...37...63...102..167
		

Crossrefs

Cf. A202875.

Programs

  • Mathematica
    s[k_] := Fibonacci[k + 1];
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
    Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]  (* A001911 *)
    Table[m[1, j], {j, 1, 12}]     (* A000045 *)
    Table[m[j, j], {j, 1, 12}]     (* A119996 *)
    Table[m[j, j + 1], {j, 1, 12}] (* A180664 *)
    Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}]  (* A002940 *)

A062125 Fifth column of A046741.

Original entry on oeis.org

5, 56, 263, 815, 1982, 4115, 7646, 13088, 21035, 32162, 47225, 67061, 92588, 124805, 164792, 213710, 272801, 343388, 426875, 524747, 638570, 769991, 920738, 1092620, 1287527, 1507430, 1754381, 2030513, 2338040, 2679257, 3056540
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (40+126*n+165*n^2+90*n^3+27*n^4)/8); # G. C. Greubel, Jan 31 2019
  • Magma
    [(40+126*n+165*n^2+90*n^3+27*n^4)/8: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {5, 56, 263, 815, 1982}, 31] (* or *) CoefficientList[Series[(5+33x^2+10x^3+31x+2x^4)/(1-x)^5,{x,0,30}],x] (* Harvey P. Dale, Dec 21 2011 *)
    Table[(40+126*n+165*n^2+90*n^3+27*n^4)/8, {n,0,40}] (* G. C. Greubel, Jan 31 2019 *)
  • PARI
    vector(40, n, n--; (40+126*n+165*n^2+90*n^3+27*n^4)/8) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(40+126*n+165*n^2+90*n^3+27*n^4)/8 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (5 + 33*x^2 + 10*x^3 + 31*x + 2*x^4)/(1-x)^5. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), where a(0)=5, a(1)=56, a(2)=263, a(3)=815, a(4)=1982. - Harvey P. Dale, Dec 21 2011
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (40 + 126*n + 165*n^2 + 90*n^3 + 27*n^4)/8.
E.g.f.: (40 + 408*x + 624*x^2 + 252*x^3 + 27*x^4)*exp(x)/8. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A062126 Sixth column of A046741.

Original entry on oeis.org

8, 114, 667, 2504, 7191, 17266, 36482, 70050, 124882, 209834, 335949, 516700, 768233, 1109610, 1563052, 2154182, 2912268, 3870466, 5066063, 6540720, 8340715, 10517186, 13126374, 16229866, 19894838, 24194298, 29207329
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5 )/40); # G. C. Greubel, Jan 31 2019
  • Magma
    [(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
  • PARI
    vector(40, n, n--; (320+1114*n+1515*n^2+1125*n^3+405*n^4 + 81*n^5)/40) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (x+2)*(2*x^4 + 8*x^3 + 36*x^2 + 31*x + 4)/(1-x)^6. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1 - y - y^2)*(1-y) - (1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (320 + 1114*n + 1515*n^2 + 1125*n^3 + 405*n^4 + 81*n^5)/40.
E.g.f.: (320 + 4240*x + 8940*x^2 + 5580*x^3 + 1215*x^4 + 81*x^5)*exp(x)/40. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

A308244 Triangle T(n,k) read by rows, giving even-numbered coefficients of the matching polynomial of the n-ladder graph.

Original entry on oeis.org

1, -1, 1, 2, -4, 1, -3, 11, -7, 1, 5, -26, 29, -10, 1, -8, 56, -94, 56, -13, 1, 13, -114, 263, -234, 92, -16, 1, -21, 223, -667, 815, -473, 137, -19, 1, 34, -424, 1577, -2504, 1982, -838, 191, -22, 1, -55, 789, -3538, 7018, -7191, 4115, -1356, 254, -25, 1, 89, -1444, 7622, -18336, 23431, -17266
Offset: 0

Views

Author

Robert Israel, May 16 2019

Keywords

Comments

For 0 <= k <= n, T(n,k) is the coefficient of x^(2*k) in the matching polynomial of the n-ladder graph. We take T(0,0)=1.

Examples

			Triangle begins
1
-1 1
2 -4 1
-3 11 -7 1
5 -26 29 -10 1
-8 56 -94 56 -13 1
13 -114 263 -234 92 -16 1
-21 223 -667 815 -473 137 -19 1
34 -424 1577 -2504 1982 -838 191 -22 1
		

Crossrefs

Programs

  • Maple
    g:= gfun:-rectoproc({a(n+3)+(-x^2+2)*a(n+2)+x^2*a(n+1)-a(n),a(0)=1,a(1)=x^2-1,a(2)=x^4-4*x^2+2}, a(n), remember):
    for nn from 0 to 10 do
    seq(coeff(g(nn),x,k),k=0..2*nn,2)
    od;

Formula

Generating function as triangle: (1+x)/(1+2*x-x*y+x^2*y-x^3).
T(n,k) = T(n-1,k-1)-2*T(n-1,k)-T(n-2,k-1)+T(n-3,k) for n >= 3 (taking T(n,k)=0 unless 0 <= k <= n).
T(n,0) = (-1)^n*A000045(n+1).
T(n,1) = (-1)^(n+1)*A002940(n) for n >= 1.
T(n,2) = (-1)^n*A002941(n-1) for n >= 2.
Previous Showing 11-16 of 16 results.