cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 111 results. Next

A258357 Numbers n such that cyclotomic polynomial value Phi(7,n!) is prime.

Original entry on oeis.org

0, 1, 2, 3, 13, 470, 2957
Offset: 1

Views

Author

Robert Price, May 27 2015

Keywords

Comments

Except for the values 0,1,2 and 3, terms correspond to probable primes.
a(8) > 6502.
Also, numbers n such that n! belongs to A100330. - Michel Marcus, May 30 2015

Examples

			3 is in the sequence because Phi(7,3!) = 1 + 6 + 6^2 + 6^3 + 6^4 + 6^5 + 6^6 = 55987 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 6502], PrimeQ[Cyclotomic[7, #!]] &]

A269485 Least k > 0 such that n! + k^2 is prime.

Original entry on oeis.org

1, 1, 1, 1, 7, 11, 7, 13, 17, 31, 13, 1, 47, 17, 19, 19, 23, 73, 43, 29, 47, 31, 43, 29, 31, 37, 167, 1, 29, 43, 79, 229, 89, 71, 137, 37, 53, 1, 79, 131, 137, 1, 71, 83, 89, 89, 53, 97, 53, 101, 59, 173, 79, 71, 353, 191, 103, 523, 229, 191, 103, 401, 67, 257
Offset: 0

Views

Author

Jean-Marc Rebert, Feb 28 2016

Keywords

Comments

a(n) = A033932(n) = 1 for n in A002981.

Examples

			a(4) = 7, because 4! + 7^2 = 73 is prime and for 0 < i < 7, 4! + i^2 is not prime.
		

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[Range@ 10000, PrimeQ[n! + #^2] &], {n, 120}]
    (* Version 10, or *)
    Table[k = 1; While[! PrimeQ[n! + k^2], k++]; k, {n, 120}] (* Michael De Vlieger, Feb 28 2016 *)
  • PARI
    a(n) = {my(k=1); while (!isprime(n! + k^2), k++); k;} \\ Michel Marcus, Feb 29 2016

A271376 Integers n such that n!/(n-2) + 1 is prime.

Original entry on oeis.org

3, 4, 5, 6, 7, 10, 12, 13, 21, 24, 37, 64, 68, 136, 169, 216, 276, 435, 617, 753, 1722, 1775, 2762, 3974, 5006, 5931, 7480, 11442, 11896, 13200, 13534, 23240, 27971, 31867
Offset: 1

Views

Author

Altug Alkan, Apr 05 2016

Keywords

Comments

Corresponding primes are 7, 13, 41, 181, 1009, 453601, ...

Examples

			3 is a term because 2*3 + 1 = 7 is prime.
4 is a term because 1*3*4 + 1 = 13 is prime.
5 is a term because 1*2*4*5 + 1 = 41 is prime.
6 is a term because 1*2*3*5*6 + 1 = 181 is prime.
7 is a term because 1*2*3*4*6*7 + 1 = 1009 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..500] | IsPrime(Factorial(n)  div (n-2) + 1)]; // Vincenzo Librandi, Apr 07 2016
  • Mathematica
    Select[Range[3, 2000], PrimeQ[( #! / (# - 2) + 1)] &] (* Vincenzo Librandi, Apr 07 2016 *)
  • PARI
    lista(nn) = for(n=3, nn, if(ispseudoprime(n!/(n-2)+1), print1(n, ", ")));
    
  • PFGW
    ABC2 $a!/($a-2) + 1
    a: from 3 to 100000
    

Extensions

a(23) from Charles R Greathouse IV, Apr 05 2016
a(24)-a(27) from Charles R Greathouse IV, Apr 06 2016
a(28)-a(32) from Charles R Greathouse IV, Apr 18 2016
a(33) from Charles R Greathouse IV, Apr 30 2016
a(34) from Charles R Greathouse IV, May 09 2016

A298702 Numbers k such that k!+1 reversed is a prime.

Original entry on oeis.org

1, 2, 3, 6, 11, 15, 17, 19, 22, 51, 867, 1909, 9641
Offset: 1

Views

Author

Paolo Galliani, Jan 25 2018

Keywords

Comments

a(14) > 19200, if it exists. - Giovanni Resta, May 04 2018

Crossrefs

Cf. A002981.

Programs

  • Mathematica
    Do[If[PrimeQ[FromDigits[Reverse[IntegerDigits[n! + 1]]]], Print[n]], {n, 400}] (* Vincenzo Librandi, Jan 25 2018 *)
  • PARI
    isok(n) = isprime(fromdigits(Vecrev(digits(n!+1)))); \\ Michel Marcus, Jan 26 2018

Extensions

a(1)-a(3) and a(8)-a(10) from Vincenzo Librandi, Jan 25 2018
a(11)-a(12) from Paolo Galliani, May 02 2018
a(13) from Giovanni Resta, May 04 2018

A344963 Numbers k such that (2*k+1)*k!+1 is prime.

Original entry on oeis.org

0, 2, 3, 5, 11, 18, 68, 77, 124, 173, 205, 293, 1037, 1530, 1905, 2342, 3401, 4372, 4679, 5385
Offset: 1

Views

Author

Reza K Ghazi, Jun 07 2021

Keywords

Comments

a(21) > 10^4.

Crossrefs

Programs

  • Maple
    select(k -> isprime((2*k+1)*k!+1), [$0 .. 300])[];
  • Mathematica
    Do[If[PrimeQ[(2*k + 1)*Factorial[k] + 1], Print[k]], {k, 0, 3000}]
  • PARI
    for(k=0, 3000, if(isprime((2*k+1)*k!+1), print1(k", ")))
    
  • SageMath
    for k in range(3000):
        if is_prime((2*k+1)*factorial(k) + 1):
            print(k)

A035094 Smallest prime of form (n!)*k + 1.

Original entry on oeis.org

2, 3, 7, 73, 241, 2161, 15121, 161281, 1088641, 10886401, 39916801, 958003201, 18681062401, 1133317785601, 9153720576001, 83691159552001, 1778437140480001, 12804747411456001, 851515702861824001, 41359334139002880001, 766364132575641600001, 20232013099996938240001
Offset: 1

Views

Author

Keywords

Comments

This is one possible generalization of "the least prime problem in special arithmetic progressions" when n in nk+1 is replaced by n!.
a(n) is the smallest prime p such that the multiplicative group modulo p has a subgroup of order n!. - Joerg Arndt, Oct 18 2020

Examples

			a(5)=241 because in arithmetic progression 120k+1=5!k+1 the second term is prime, 241.
		

Crossrefs

Analogous case is A034694. Special case for k=1 is A002981.
Cf. A035093 (values of k).

Programs

  • Mathematica
    sp[n_]:=Module[{nf=n!,k=1},While[!PrimeQ[nf*k+1],k++];nf*k+1]; Array[sp,20] (* Harvey P. Dale, Jan 27 2013 *)
  • PARI
    a(n) = for(k=1, oo, if(isprime(k*n! + 1), return(k*n! + 1))); \\ Daniel Suteu, Oct 18 2020

A051857 Numbers n such that (n!)^2-n!+1 is prime.

Original entry on oeis.org

2, 3, 5, 7, 38, 2319, 2996, 3321, 3892
Offset: 1

Views

Author

Andrew Walker (ajw01(AT)uow.edu.au), Dec 13 1999

Keywords

Comments

a(1)-a(9) are verified primes using BLS option in pfgw. - Robert Price, Aug 24 2014
a(10) > 15000. - Robert Price, Aug 24 2014

Crossrefs

Programs

  • PARI
    isok(n) = isprime((n!)^2-n!+1); \\ Michel Marcus, Aug 26 2013

Extensions

a(7)-a(9) from Robert Price, Aug 24 2014

A084830 Numbers k such that (k!)^2 + k! - 1 is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 14, 17, 50, 111, 254, 506, 6613, 7475
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 12 2003

Keywords

Examples

			5 is in the sequence because (5!)^2 + 5! - 1 = 14519 is prime.
		

References

  • H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987).

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[n!^2+n!-1], Print[n]], {n, 600}]

Extensions

a(12)-a(13) from Michael S. Branicky, May 28 2025

A084898 Numbers k such that k^k*k! + 1 is prime.

Original entry on oeis.org

1, 3, 7, 13, 23, 55, 90, 337, 2313, 8767
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 14 2003

Keywords

Comments

All terms under 500 correspond to certified primes (Primo 2.2.0 beta). a(10) > 2500. - Ryan Propper, Apr 05 2006
a(11) > 10000. - Eric Snyder, Jun 03 2022

Examples

			7 is in the sequence because 7^7*7! + 1 = 4150656721 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[n^n*n!+1], Print[n]], {n, 600}]

Extensions

a(9) from Ryan Propper, Apr 05 2006
a(10) from Eric Snyder, Jun 03 2022

A085700 Numbers k such that (2k)! - (2k-2)! + (2k-4)! - ... + (-1)^k 0! is prime.

Original entry on oeis.org

2, 4, 26, 112, 365, 449, 453
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 18 2003

Keywords

Comments

There is no further term up to 1000. Consider that 3 divides k! + (k-1)! + (k-2)! + ... + 1! (k > 1), so this number is composite for k > 2. Also 5 divides k! - (k-1)! + ... + (-1)^k*1! for k > 2, so this number is composite for k > 3.
Data is complete as there are no further primes for k < 1398 and for all k >= 1398, the given alternating factorial sum is divisible by 2797. - Michael S. Branicky, Dec 22 2024

Examples

			4 is in the sequence because 8! - 6! + 4! - 2! + 1 = 39623 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[Sum[(-1)^(n-k)(2k)!, {k, 0, n}]], Print[n]], {n, 1000}]
Previous Showing 91-100 of 111 results. Next