A361591
Triangle read by rows: T(n,k) is the number of weakly connected simple digraphs on n labeled nodes with k strongly connected components.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 18, 18, 18, 0, 1606, 1098, 684, 446, 0, 565080, 263580, 116370, 55620, 26430, 0, 734774776, 225806940, 68822910, 24578010, 9729090, 3596762, 0, 3523091615568, 680637057912, 136498491360, 34626926250, 10819771830, 3694824126, 1111506858
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 18, 18, 18;
0, 1606, 1098, 684, 446;
0, 565080, 263580, 116370, 55620, 26430;
0, 734774776, 225806940, 68822910, 24578010, 9729090, 3596762;
...
-
\\ Uses functions defined in A361455.
T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(1 + log(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e))))))))))]}
{ my(A=T(6)); for(i=1, #A, print(A[i])) }
A054914
Number of labeled connected digraphs with n nodes such that complement is also connected.
Original entry on oeis.org
1, 2, 44, 3572, 1005584, 1060875152, 4382913876704, 71987098738435232, 4721068803628864289024, 1237845578934919489219757312, 1298046978912816702510086132201984, 5444486716626952189940499391640815580672, 91343710775311761525117954724021374685703481344
Offset: 1
-
m:=30;
f:= func< x | (&+[2^(n*(n-1))*x^n/Factorial(n): n in [0..m+3]]) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( 1 + 2*Log(f(x)) - f(x) ))); // G. C. Greubel, Apr 28 2023
-
b:= n-> 2^(n^2-n):
g:= proc(n) option remember; local k; `if`(n=0, 1,
b(n)- add(k*binomial(n,k) *b(n-k)*g(k), k=1..n-1)/n)
end:
a:= n-> 2*g(n)-b(n):
seq (a(n), n=1..20); # Alois P. Heinz, Oct 21 2012
-
nn=20; g=Sum[2^(2Binomial[n,2])x^n/n!,{n,0,nn}];
Drop[Range[0,nn]!CoefficientList[Series[2(Log[g]+1)-g,{x,0,nn}],x],1] (* Geoffrey Critzer, Oct 21 2012 *)
-
m=30
def f(x): return sum(2^(n*(n-1))*x^n/factorial(n) for n in range(m+4))
def A054914_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( 2 + 2*log(f(x)) - f(x) ).egf_to_ogf().list()
a=A054914_list(40); a[1:] # G. C. Greubel, Apr 28 2023
A177781
E.g.f. satisfies: L(x) = x*Sum_{n>=0} 3^n/n!*Product_{k=0..n-1} L(4^k*x).
Original entry on oeis.org
1, 6, 162, 15336, 5135400, 6403850928, 30733361357328, 576178771105452672, 42495458789243292762240, 12378928091101498820594407680, 14278666564505879853034906179788544
Offset: 1
E.g.f.: L(x) = x + 6*x^2/2! + 162*x^3/3! + 15336*x^4/4! + 5135400*x^5/5! + ... + n*A003027(n)*x^n/n! + ...
Given the related expansions:
. E(x) = 1 + x + 4*x^2/2! +64*x^3/3! +4096*x^4/4! +1048576*x^5/5! + ...
. log(E(x)) = x + 3*x^2/2! +54*x^3/3! +3834*x^4/4! +1027080*x^5/5! + ... + A003027(n)*x^n/n! + ...
then L(x) satisfies:
. L(x)/x = 1 + 3*L(x) + 3^2*L(x)L(4x)/2! + 3^3*L(x)L(4x)L(16x)/3! + 3^4*L(x)L(4x)L(16x)L(64x)/4! + ...
. 1/E(x) = 1 - L(x) + L(x)L(4x)/2! - L(x)L(4x)L(16x)/3! + L(x)L(4x)L(16x)L(64x)/4! -+ ...
-
{a(n,q=4)=local(Lq=x+x^2);for(i=1,n,Lq=x*sum(m=0,n,(q-1)^m/m!*prod(k=0,m-1,subst(Lq,x,q^k*x+x*O(x^n)))));n!*polcoeff(Lq,n)}
-
{a(n,q=4)=n!*polcoeff(sum(m=1,n,q^(m*(m-1)/2)*x^m/(m-1)!)/sum(m=0,n,q^(m*(m-1)/2)*x^m/m!+x*O(x^n)),n)} \\ Paul D. Hanna, Aug 31 2010
A308458
Expansion of e.g.f. log(Sum_{k>=0} k^binomial(k,2) * x^k / k!).
Original entry on oeis.org
1, 1, 23, 3994, 9745169, 470126386536, 558542572785461515, 19342808645467142112096240, 22528399370853856386499346950471953, 999999999774716004550606847948627702867525440, 1890591424701781041871514584507296209311760279398415565711
Offset: 1
E.g.f.: x + x^2/2! + 23*x^3/3! + 3994*x^4/4! + 9745169*x^5/5! + 470126386536*x^6/6! + 558542572785461515*x^7/7! + ... .
A308460
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. log(Sum_{j>=0} k^binomial(j,2) * x^j/j!).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 20, 38, 0, 1, 4, 54, 624, 728, 0, 1, 5, 112, 3834, 55248, 26704, 0, 1, 6, 200, 15104, 1027080, 13982208, 1866256, 0, 1, 7, 324, 45750, 9684224, 1067308488, 10358360640, 251548592, 0, 1, 8, 490, 116208, 60225000, 30458183680, 4390480193904, 22792648882176, 66296291072, 0
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, ...
0, 4, 20, 54, 112, ...
0, 38, 624, 3834, 15104, ...
0, 728, 55248, 1027080, 9684224, ...
0, 26704, 13982208, 1067308488, 30458183680, ...
A127911
Number of nonisomorphic partial functional graphs with n points which are not functional graphs.
Original entry on oeis.org
0, 1, 3, 9, 26, 74, 208, 586, 1647, 4646, 13135, 37247, 105896, 301880, 862498, 2469480, 7083690, 20353886, 58571805, 168780848, 486958481, 1406524978, 4066735979, 11769294050, 34090034328, 98820719105, 286672555274
Offset: 0
a(0) = 0 because the null graph is trivially both partial functional and functional.
a(1) = 1 because there are two partial functional graphs on one point: the point with, or without, a loop; the point with loop is the identity function, but without a loop the naked point is the unique merely partial functional case.
a(2) = 3 because there are A126285(2) enumerates the 6 partial functional graphs on 2 points, of which 3 are functional, 6 - 3 = 3.
a(3) = A126285(3) - A001372(3) = 16 - 7 = 9.
a(4) = 45 - 19 = 26.
a(5) = 121 - 47 = 74.
a(6) = 338 - 130 = 208.
a(7) = 929 - 343 = 586.
a(8) = 2598 - 951 = 1647.
a(9) = 7261 - 2615 = 4646.
a(10) = 20453 - 7318 = 13135.
- S. Skiena, "Functional Graphs." Section 4.5.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 164-165, 1990.
A127912
Number of nonisomorphic disconnected mappings (or mapping patterns) from n points to themselves; number of disconnected endofunctions.
Original entry on oeis.org
0, 1, 3, 10, 27, 79, 218, 622, 1753, 5007, 14274, 40954, 117548, 338485, 975721, 2817871, 8146510, 23581381, 68322672, 198138512, 575058726, 1670250623, 4854444560, 14117859226, 41081418963, 119606139728
Offset: 0
a(0) = 0, as the null digraph is formally neither connected nor disconnected.
a(1) = 0, as the unique endofunction on one point is the identity function on one value and is connected.
a(2) = 1, as there are 3 endofunctions on two points, two of which are "prime endofunctions" and one of which is the direct sum of two copies of the unique endofunction on one point, namely two points-with-loops, or the identity function on two values; 3 - 2 = 1.
a(3) = A001372(3) - A002861(3) = 7 - 4 = 3.
a(4) = A001372(4) - A002861(4) = 19 - 9 = 10.
a(5) = A001372(5) - A002861(5) = 47 - 20 = 27.
a(6) = 130 - 51 = 79.
a(7) = 343 - 125 = 218.
a(8) = 951 - 329 = 622.
a(9) = 2615 - 862 = 1753.
a(10) = 7318 - 2311 = 5007.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
- R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.399 and 41.401.
Comments