cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A326223 Number of non-Hamiltonian unlabeled n-vertex digraphs (with loops).

Original entry on oeis.org

1, 0, 7, 80, 2186
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Examples

			Non-isomorphic representatives of the a(2) = 7 digraph edge-sets:
  {}
  {11}
  {12}
  {11,12}
  {11,21}
  {11,22}
  {11,12,22}
		

Crossrefs

The labeled case is A326220.
The case without loops is A326222.
The undirected case is A246446 (without loops) or A326239 (with loops).
Hamiltonian unlabeled digraphs are A326226.
Unlabeled digraphs not containing a Hamiltonian path are A326224.

A345258 Number of acyclic digraphs (or DAGs) on n unlabeled vertices with one source and one sink.

Original entry on oeis.org

1, 1, 2, 10, 98, 1960, 80176, 6686760, 1129588960, 384610774696, 263104175114712, 360908867732030980, 991603865814038728388, 5453395569997436383751204, 60010050181461052836515513108, 1321051495313052133670927704328040, 58170762510305449187073353930875222256
Offset: 1

Views

Author

Max Alekseyev, Jun 12 2021

Keywords

Crossrefs

Row sums of A350491.
The labeled version is A165950.

Programs

Extensions

a(9) from Brendan McKay.
Terms a(10) and beyond from Mikhail Tikhomirov, Jun 16 2021

A101228 Number of weakly connected acyclic digraphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 4, 24, 267, 5647, 237317, 20035307, 3404385285, 1162502511721, 796392234736238, 1093228137893084112, 3004752537725051647790, 16527844667281561960220731, 181891583847006693859132403681, 4004313473818592854334088690859030
Offset: 1

Views

Author

Vladeta Jovovic, Jan 22 2005

Keywords

Comments

The multiset transformation gives the number acyclic digraphs on n unlabeled nodes with k components:
1 ;
1 , 1 ;
4 , 1 , 1 ;
24 , 5 , 1 , 1 ;
267 , 28 , 5 , 1 , 1 ;
5647 , 301 , 29 , 5 , 1 , 1 ;
237317 , 6010 , 305 , 29 , 5 , 1 , 1 ; R. J. Mathar, Mar 21 2019

Crossrefs

Row sums of A350449.
Column sums of A350450.
Cf. A003087 (Euler trans.), A082402, A350451.

A326222 Number of non-Hamiltonian unlabeled n-vertex digraphs (without loops).

Original entry on oeis.org

1, 0, 2, 12, 157, 5883, 696803, 255954536
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Crossrefs

The labeled case is A326218 (without loops) or A326220 (with loops).
The undirected case (without loops) is A246446.
The case with loops is A326223.
Hamiltonian unlabeled digraphs are A326225 (without loops) or A003216 (with loops).

Formula

a(n) = A000273(n) - A326225(n). - Pontus von Brömssen, Mar 17 2024

Extensions

a(5)-a(7) (using A000273 and A326225) from Pontus von Brömssen, Mar 17 2024

A350447 Triangle read by rows: T(n,k) is the number of acyclic digraphs on n unlabeled nodes with k arcs, n >=0, k = 0..(n-1)*n/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 9, 9, 6, 1, 1, 1, 4, 12, 37, 60, 80, 63, 33, 10, 1, 1, 1, 4, 13, 51, 163, 407, 796, 1169, 1291, 1057, 649, 281, 85, 15, 1, 1, 1, 4, 13, 54, 215, 846, 2690, 7253, 15703, 27596, 39057, 44902, 41723, 31336, 18844, 8983, 3325, 920, 180, 21, 1
Offset: 0

Views

Author

Andrew Howroyd, Dec 31 2021

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1;
  [2] 1, 1;
  [3] 1, 1, 3,  1;
  [4] 1, 1, 4,  9,  9,  6,  1;
  [5] 1, 1, 4, 12, 37, 60, 80, 63, 33, 10, 1;
  ...
		

Crossrefs

The labeled version is A081064.
Row sums are A003087.

Programs

  • PARI
    \\ See PARI link in A122078 for program code.
    { my(T=AcyclicDigraphsByArcs(6)); for(n=1, #T, print(T[n])) }

A361582 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with k strongly connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 5, 5, 6, 0, 83, 62, 42, 31, 0, 5048, 2494, 1172, 592, 302, 0, 1047008, 330063, 103961, 38312, 15616, 5984, 0, 705422362, 137934757, 28095923, 7243110, 2297690, 795930, 243668, 0, 1580348371788, 184557780045, 23226116293, 3951426731, 914429926, 261269562, 79512478, 20286025
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
  1;
  0,       1;
  0,       1,      2;
  0,       5,      5,      6;
  0,      83,     62,     42,    31;
  0,    5048,   2494,   1172,   592,   302;
  0, 1047008, 330063, 103961, 38312, 15616, 5984;
  ...
		

Crossrefs

Column k=1 is A035512.
Main diagonal is A003087.
Row sums are A000273.
The labeled version is A361455.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A361582triang(6)); for(n=1, #A, print(A[n])) }

A361590 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with exactly k strongly connected components of size 1.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 5, 5, 0, 6, 90, 55, 42, 0, 31, 5289, 2451, 974, 592, 0, 302, 1071691, 323709, 94332, 29612, 15616, 0, 5984, 712342075, 135208025, 25734232, 6059018, 1650492, 795930, 0, 243668, 1585944117738, 181427072519, 21650983294, 3358042412, 704602272, 174576110, 79512478, 0, 20286025
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
        1;
        0,      1;
        1,      0,     2;
        5,      5,     0,     6;
       90,     55,    42,     0,    31;
     5289,   2451,   974,   592,     0, 302;
  1071691, 323709, 94332, 29612, 15616,   0, 5984;
  ...
		

Crossrefs

Column k=0 is A361586.
Main diagonal is A003087.
Row sums are A000273.
The labeled version is A361592.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A361590triang(6)); for(n=1, #A, print(A[n])) }

A361718 Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 02 2023

Keywords

Comments

Also the number of sets of n nonempty subsets of {1..n}, k of which are singletons, such that there is only one way to choose a different element from each. For example, row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}} {{1},{2},{1,2,3}}
{{3},{1,2},{2,3}} {{1},{3},{1,2,3}}
{{3},{1,3},{2,3}} {{2},{3},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}

Examples

			Triangle begins:
  1;
  0,     1;
  0,     2,     1;
  0,    15,     9,    1;
  0,   316,   198,   28,  1;
  0, 16885, 10710, 1610, 75, 1;
  ...
		

Crossrefs

Cf. A058876 (mirror), A361579, A224069.
Row-sums are A003024, unlabeled A003087.
Column k = 1 is A003025(n) = |n*A134531(n)|.
Column k = n-1 is A058877.
For fixed sinks we get A368602.
A058891 counts set-systems, unlabeled A000612.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
    nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]

Formula

T(n,k) = A368602(n,k) * binomial(n,k). - Gus Wiseman, Jan 03 2024

A087614 Number of unlabeled acyclic preferences/voting outcomes, indifference and undecidedness/incompleteness permitted (Social Choice Theory).

Original entry on oeis.org

1, 3, 15, 192, 7117
Offset: 1

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Sep 12 2003

Keywords

Crossrefs

Cf. A087613 for the labeled analog, A003087, A087616.

A087616 Number of unlabeled cyclic preferences/voting outcomes, indifference and undecidedness/incompleteness permitted (Social Choice Theory).

Original entry on oeis.org

0, 0, 1, 26, 2491
Offset: 1

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Sep 12 2003

Keywords

Crossrefs

Cf. A087615 for the labeled analog, A003087, A087614, A000273.

Formula

Equals A000273 - A087614.
Previous Showing 11-20 of 23 results. Next