A326223 Number of non-Hamiltonian unlabeled n-vertex digraphs (with loops).
1, 0, 7, 80, 2186
Offset: 0
Examples
Non-isomorphic representatives of the a(2) = 7 digraph edge-sets: {} {11} {12} {11,12} {11,21} {11,22} {11,12,22}
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Non-isomorphic representatives of the a(2) = 7 digraph edge-sets: {} {11} {12} {11,12} {11,21} {11,22} {11,12,22}
Triangle begins: [0] 1; [1] 1; [2] 1, 1; [3] 1, 1, 3, 1; [4] 1, 1, 4, 9, 9, 6, 1; [5] 1, 1, 4, 12, 37, 60, 80, 63, 33, 10, 1; ...
\\ See PARI link in A122078 for program code. { my(T=AcyclicDigraphsByArcs(6)); for(n=1, #T, print(T[n])) }
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 5, 5, 6; 0, 83, 62, 42, 31; 0, 5048, 2494, 1172, 592, 302; 0, 1047008, 330063, 103961, 38312, 15616, 5984; ...
Triangle begins: 1; 0, 1; 1, 0, 2; 5, 5, 0, 6; 90, 55, 42, 0, 31; 5289, 2451, 974, 592, 0, 302; 1071691, 323709, 94332, 29612, 15616, 0, 5984; ...
Triangle begins: 1; 0, 1; 0, 2, 1; 0, 15, 9, 1; 0, 316, 198, 28, 1; 0, 16885, 10710, 1610, 75, 1; ...
nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]
Comments