cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 61 results. Next

A193637 a(n) = a(n-1)^2 - n^(n+1).

Original entry on oeis.org

0, -1, -7, -32, 0, -15625, 243860689, 59468035633789920, 3536447262141707692104062559388672, 12506459237909580203511583184455022770672120296396568887010875139183
Offset: 0

Views

Author

Arkadiusz Wesolowski, Aug 01 2011

Keywords

Comments

Example of a recursive sequence which produces a table containing two zeros.

Examples

			a(2) = -7 because a(1) = -1 and (-1)^2 - 2^(2+1) = -7.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1]^2 - n^(n + 1), a[0] == 0}, a, {n, 10}]
  • PARI
    a=0; for(n=0, 10, print1(a=a^2-n^(n+1), ", "));

Formula

a(0) = 0, a(n) = a(n-1)^2 - n^(n+1).

A193925 a(n) = a(n-1)^2 - n^(n-2) + n.

Original entry on oeis.org

0, 0, 1, 1, -11, 1, -1289, 1644721, 2705106905705, 7317603371292879756764065, 53547319099556919431874542743248407878119975324235
Offset: 0

Views

Author

Arkadiusz Wesolowski, Aug 09 2011

Keywords

Comments

Example of a recursive sequence which produces a table containing three ones.

Examples

			a(4) = -11 because a(3) = 1 and 1^2 - 4^(4-2) + 4 = -11.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1]^2 - n^(n - 2) + n, a[0] == 0}, a, {n, 10}]
  • PARI
    print1(a=0, ", "); for(n=1, 10, print1(a=a^2-n^(n-2)+n, ", "));

Formula

a(0) = 0, a(n) = a(n-1)^2 - n^(n-2) + n.

A256344 Moduli n for which A248218(n) = 4 (length of the terminating cycle of 0 under x -> x^2+1 modulo n).

Original entry on oeis.org

13, 26, 39, 47, 52, 78, 79, 91, 94, 104, 113, 141, 143, 156, 158, 169, 173, 182, 188, 197, 208, 226, 237, 247, 273, 282, 286, 299, 312, 316, 329, 338, 339, 346, 353, 364, 376, 377, 394, 403, 416, 429, 439, 452, 474, 481, 494, 507, 517, 519, 546, 553, 559, 564, 572, 591, 598
Offset: 1

Views

Author

M. F. Hasler, Mar 25 2015

Keywords

Comments

If x is a member and y is a member of this sequence or A248219 or A256342, then LCM(x,y) is a member. - Robert Israel, Mar 09 2021

Examples

			See A256342 or A256349.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local x, k, R,p;
      x:= 0; R[0]:= 0;
      for k from 1 do
        x:= x^2+1 mod n;
        if assigned(R[x]) then return evalb(k-R[x] = 4)
        else R[x]:= k
        fi
      od;
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 09 2021
  • PARI
    for(i=1,600,A248218(i)==4&&print1(i","))

A256345 Moduli n for which A248218(n) = 5 (length of the terminating cycle of 0 under x -> x^2+1 modulo n).

Original entry on oeis.org

83, 151, 167, 223, 249, 257, 283, 359, 373, 453, 501, 563, 581, 607, 669, 677, 771, 821, 849, 953, 1057, 1077, 1119, 1169, 1321, 1561, 1577, 1689, 1743, 1799, 1821, 1981, 1987, 2017, 2031, 2463, 2513, 2573, 2611, 2833, 2859, 2869
Offset: 1

Views

Author

M. F. Hasler, Mar 25 2015

Keywords

Comments

If x is a member and y is a member of this sequence or A248219, then LCM(x,y) is a member. - Robert Israel, Mar 09 2021

Examples

			See A256342 or A256349.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local x, k, R,p;
      x:= 0; R[0]:= 0;
      for k from 1 do
        x:= x^2+1 mod n;
        if assigned(R[x]) then return evalb(k-R[x] = 5)
        else R[x]:= k
        fi
      od;
    end proc:
    select(filter, [$1..3000]); # Robert Israel, Mar 09 2021
  • PARI
    for(i=1,2900,A248218(i)==5&&print1(i","))

A256346 Moduli n for which A248218(n) = 6.

Original entry on oeis.org

10, 17, 18, 20, 30, 34, 36, 40, 49, 50, 51, 54, 55, 60, 68, 70, 72, 73, 80, 85, 90, 98, 99, 100, 102, 108, 110, 115, 118, 119, 120, 126, 136, 140, 144, 145, 146, 147, 150, 153, 160, 165, 170, 180, 187, 190, 194, 196, 198, 199, 200, 204, 207, 210, 211, 216, 219, 220, 230, 236, 238, 240, 245, 250
Offset: 1

Views

Author

M. F. Hasler, Mar 25 2015

Keywords

Comments

If x is a member of this sequence, and y is a member of this sequence or A248219 or A256342 or A256343, then LCM(x,y) is a member of this sequence. - Robert Israel, Mar 09 2021

Crossrefs

Programs

  • Maple
    filter:= proc(n) local x, k, R,p;
      x:= 0; R[0]:= 0;
      for k from 1 do
        x:= x^2+1 mod n;
        if assigned(R[x]) then return evalb(k-R[x] = 6)
        else R[x]:= k
        fi
      od;
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 09 2021
  • PARI
    for(i=1,250,A248218(i)==6&&print1(i","))

A256347 Moduli n for which A248218(n) = 7.

Original entry on oeis.org

41, 123, 131, 287, 317, 393, 503, 547, 727, 779, 861, 917, 951, 1091, 1237, 1271, 1277, 1509, 1517, 1627, 1637, 1641, 1681, 1763, 2089, 2181, 2219, 2239, 2337, 2357, 2383, 2489, 2531, 2671, 2751, 2789
Offset: 1

Views

Author

M. F. Hasler, Mar 25 2015

Keywords

Comments

If x is a member, and y is a member of this sequence or A248219, then LCM(x,y) is a member. - Robert Israel, Mar 09 2021

Crossrefs

Programs

  • Maple
    filter:= proc(n) local x, k, R,p;
      x:= 0; R[0]:= 0;
      for k from 1 do
        x:= x^2+1 mod n;
        if assigned(R[x]) then return evalb(k-R[x] = 7)
        else R[x]:= k
        fi
      od;
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Mar 09 2021
  • PARI
    for(i=1,3000,A248218(i)==7&&print1(i","))

A328699 Start with 0, a(n) is the smallest number of iterations: x -> (x^2+1) mod n needed to run into a cycle.

Original entry on oeis.org

0, 0, 2, 1, 0, 2, 3, 2, 2, 0, 4, 2, 0, 3, 2, 3, 2, 2, 5, 1, 3, 4, 6, 2, 1, 0, 2, 3, 9, 2, 4, 3, 4, 2, 3, 2, 5, 5, 2, 2, 0, 3, 7, 4, 2, 6, 10, 3, 3, 1, 2, 1, 7, 2, 4, 3, 5, 9, 8, 2, 5, 4, 3, 4, 0, 4, 10, 2, 6, 3, 7, 2, 3, 5, 2, 5, 4, 2, 4, 3, 2, 0, 6, 3, 2, 7, 9, 4, 2, 2, 3
Offset: 1

Views

Author

Jianing Song, Oct 26 2019

Keywords

Comments

Let f(0) = 0, f(k+1) = (f(k)^2+1) mod n, then a(n) is the smallest i such that f(i) = f(j) for some j > i.
Obviously a(n) <= A000224(n): f(1), f(2), ..., f(A000224(n)+1) are all of the form (s^2+1) mod n, so there must exists 0 <= i < j <= A000224(n)+1 such that f(i) = f(j), and a(n) <= i <= A000224(n). The equality seems to hold only for n = 3.
k divides A003095(m) for some m > 0 if and only if a(k) = 0, in which case all the indices m such that k divides A003095(m) are m = t*A248218(k), t = 0, 1, 2, 3, ...

Examples

			A003095(n) mod 3: 0, 1, (2). {A003095(n) mod 3} enters into the cycle (2) from the 2nd term on, so a(3) = 2.
A003095(n) mod 7: 0, 1, 2, (5). {A003095(n) mod 7} enters into the cycle (5) from the 3rd term on, so a(7) = 3.
A003095(n) mod 29: 0, 1, 2, 5, 26, 10, 14, 23, 8, (7, 21). {A003095(n) mod 29} enters into the cycle (7, 21) from the 9th term on, so a(29) = 9.
A003095(n) mod 37: 0, 1, 2, 5, 26, (11). {A003095(n) mod 37} enters into the cycle (11) from the 5th term on, so a(37) = 5.
A003095(n) mod 41: (0, 1, 2, 5, 26, 21, 32). {A003095(n) mod 41} enters into the cycle (0, 1, 2, 5, 26, 21, 32) from the very beginning, so a(41) = 0.
		

Crossrefs

Cf. A003095, A248218 (cycle length), A328700, A000224.

Programs

  • PARI
    a(n) = my(v=[0],k); for(i=2, n+1, k=(v[#v]^2+1)%n; v=concat(v, k); for(j=1, i-1, if(v[j]==k, return(j-1))))

A363257 a(n) = floor( ((a(n-1) + 1) / 2)^2 ) + 1 for n >= 1, with a(0) = 0.

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 31, 257, 16642, 69247363, 1198799355237125, 359279973529237254190922184970, 32270524844792355518177347536627638351478874995525184567711
Offset: 0

Views

Author

Harry Richman, May 23 2023

Keywords

Comments

Iterated application of A033638, with a shift.

Crossrefs

Programs

  • PARI
    a(n) = if(n < 1, 0, floor( ((a(n-1) + 1) / 2)^2 ) + 1) \\ Andrew Howroyd, Jan 01 2024

Formula

a(n) = A033638(a(n-1)+1) for n > 0.
log a(n) ~ C * 2^n for some constant C.

A135378 Main diagonal of "square and add k" array.

Original entry on oeis.org

2, 5, 38, 2707, 21418388, 3000279372337641, 255122481276683701099886061668842
Offset: 0

Views

Author

Jonathan Vos Post, Dec 09 2007

Keywords

Comments

Array of recurrence "start with 2, square and add k" begins:
k..|.A[k,n]=A[k,n-1]^2 + k
-1.|.2..3...8....63.......3968..15745023.247905749270528.............A003096
0..|.2..4..16...256......65536..4294967296.18446744073709551616......A001146
1..|.2..5..26...677.....458330..210066388901.44127887745906175987802.A003095
2..|.2..6..38..1446....2090918.4371938082726...19113842599189892819591078...
3..|.2..7..52..2707....7327852.53697414933907..2883412370584178505178284652.
4..|.2..8..68..4628...21418388.458747344518548.210449126102819371741916028308.
5..|.2..9..86..7401...54774806.3000279372337641.9001676312074749038996905444886.
6..|.2.10.106.11242..126382570.1597255405035792810...
7..|.2.11.128.16391..268664888.72180822044052551...
8..|.2.12.152.23112..534164552.285331768613360712..
9..|.2.13.178.31693.1004446258.1008912285210202573.
10.|.2.14.206.42446.1801662926.3245989298922881486.

Crossrefs

Programs

  • Mathematica
    A[k_,0] = 2; A[k_,n_] := A[k,n] = A[k, n-1]^2 + k; a[n_] := A[n, n]; a /@ Range[0, 6] (* Giovanni Resta, Jun 20 2016 *)

Formula

a(n) = A[n,n] where A[k,n] = n-th term of recurrence A[k,0] = 2, A[k,n] = A[k,n-1]^2 + k.

Extensions

Corrected and edited by Giovanni Resta, Jun 20 2016

A248545 a(n+1) = a(n)^2 + 75.

Original entry on oeis.org

0, 75, 5700, 32490075, 1055604973505700, 1114301860089969598947932490075, 1241668635399966182910364962424859894024949485439789973505700
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 08 2014

Keywords

Comments

Dedicated to N. J. A. Sloane for his 75th birthday!

Crossrefs

Cf. A003095.

Programs

  • Mathematica
    RecurrenceTable[{a[n+1]==a[n]^2+75,a[0]==0},a,{n,0,10}]
    NestList[#^2+75&,0,10] (* Harvey P. Dale, Jan 14 2016 *)

Formula

a(n) ~ c^(2^n), where c = 8.688980833378203252201919626948141475048572223268...
Previous Showing 51-60 of 61 results. Next