cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 99 results. Next

A039899 Number of partitions satisfying 0 < cn(0,5) + cn(2,5) + cn(3,5).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 12, 18, 25, 36, 49, 68, 91, 123, 162, 214, 278, 362, 464, 596, 757, 961, 1209, 1521, 1897, 2366, 2931, 3627, 4463, 5487, 6711, 8200, 9976, 12121, 14672, 17738, 21371, 25716, 30852, 36964, 44168, 52709, 62746, 74600, 88497
Offset: 0

Views

Author

Keywords

Comments

For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: o < 0 + 2 + 3 (OMZBBp).
Number of partitions of n such that (greatest part) > (multiplicity of greatest part), for n >= 1. For example, a(6) counts these 8 partitions: 6, 51, 42, 411, 33, 321, 3111, 21111. See the Mathematica program at A240057 for the sequence as a count of partitions defined in this manner, and related sequences. - Clark Kimberling, Apr 02 2014

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t,
          `if`(i<1, 0, b(n, i-1, t)+ `if`(i>n, 0, b(n-i, i,
          `if`(irem(i, 5) in {1, 4}, t, 1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 03 2014
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; Min[p] < Length[p]], {n, 24}] (* Clark Kimberling, Feb 13 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n==0, t, If[i<1, 0, b[n, i-1, t] + If[i > n, 0, b[n-i, i, If[MemberQ[{1, 4}, Mod[i, 5]], t, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=0, N, x^k*(1-x^(k*(k-1)))/prod(j=1, k, 1-x^j)))) \\ Seiichi Manyama, Jan 13 2022

Formula

G.f.: Sum_{k>=0} x^k * (1-x^(k*(k-1))) / Product_{j=1..k} (1-x^j). - Seiichi Manyama, Jan 13 2022

A333155 Decimal expansion of a constant related to the asymptotics of A268188 and A333153.

Original entry on oeis.org

5, 9, 3, 2, 4, 2, 2, 1, 5, 0, 0, 3, 3, 6, 9, 1, 2, 7, 1, 8, 4, 1, 3, 7, 6, 1, 7, 3, 3, 0, 2, 5, 5, 9, 5, 4, 1, 1, 0, 9, 9, 5, 9, 5, 4, 9, 6, 2, 7, 9, 5, 7, 4, 2, 9, 0, 6, 0, 2, 4, 5, 7, 8, 6, 0, 4, 5, 3, 5, 9, 2, 2, 3, 8, 5, 4, 6, 8, 1, 3, 3, 3, 3, 2, 5, 5, 0, 4, 8, 0, 7, 2, 0, 2, 8, 1, 9, 6, 6, 3, 9, 7, 1, 0, 7, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2020

Keywords

Examples

			0.5932422150033691271841376173302559541109959549627957429060245786...
		

Crossrefs

Programs

  • Maple
    evalf(sqrt(15) * log((sqrt(5) + 1)/2) / Pi, 120);
  • Mathematica
    RealDigits[Sqrt[15]*Log[GoldenRatio]/Pi, 10, 105][[1]]

Formula

Equals sqrt(15) * log(phi) / Pi, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
If m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k^2) / Product_{j=1..k} (1 - x^j)), then a(n) ~ A333155^m * phi^(1/2) * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2)).
If m >= 0 and g.f. is Sum_{k>=1} (k^m * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j)), then a(n) ~ A333155^m * exp(2*Pi*sqrt(n/15)) * n^((2*m-3)/4) / (2 * 3^(1/4) * 5^(1/2) * phi^(1/2)).

A259361 n occurs 2n+2 times.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Keywords

Comments

Define the oblong root obrt(x) to be the (larger) solution of y * (y+1) = x; i.e., obrt(x) = sqrt(x+1/4) - 1/2. So obrt(x) is an integer iff x is an oblong number (A002378). Then a(n) = floor(obrt(n)).
a(n) gives (from the preceding comment) also the maximal number of parts of partitions of n with no part 1 and difference of parts at least two. See A003106, with the combinatorial interpretation of the sum of the Rogers-Ramanujan identity. - Wolfdieter Lang, Oct 29 2016

Crossrefs

Programs

  • Haskell
    a259361 = floor . subtract (1 / 2) . sqrt . (+ 1 / 4) . fromIntegral
    a259361_list = concat xss where
       xss = iterate (\(xs@(x:_)) -> map (+ 1) (x : x : xs)) [0, 0]
    -- Reinhard Zumkeller, Jul 09 2015
    
  • Magma
    [Floor((-1+Sqrt(1+4*n))/2): n in [0..85]]; // Vincenzo Librandi, Oct 30 2016
    
  • Mathematica
    Flatten[Table[PadLeft[{}, 2n + 2, n], {n, 0, 8}]] (* Alonso del Arte, Jun 30 2015 *)
    Table[Floor[(-1 + Sqrt[1 + 4 n])/2], {n, 0, 120}] (* Michael De Vlieger, Oct 31 2016 *)
  • Python
    from math import isqrt
    def A259361(n): return (m:=isqrt(n-1)-1)+(n-1>m*(m+3)) if n else 0 # Chai Wah Wu, Nov 07 2024

Formula

a(n) = A000194(n+1)-1.
a(n) = floor((-1 + sqrt(1+4*n))/2). See the first comment above. - Wolfdieter Lang, Oct 29 2016

A284152 a(n) = Sum_{d|n, d == 2 or 3 mod 5} d.

Original entry on oeis.org

0, 2, 3, 2, 0, 5, 7, 10, 3, 2, 0, 17, 13, 9, 3, 10, 17, 23, 0, 2, 10, 24, 23, 25, 0, 15, 30, 37, 0, 5, 0, 42, 36, 19, 7, 35, 37, 40, 16, 10, 0, 54, 43, 24, 3, 25, 47, 73, 7, 2, 20, 67, 53, 50, 0, 45, 60, 60, 0, 17, 0, 64, 73, 42, 13, 60, 67, 87, 26, 9, 0, 115, 73
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2017

Keywords

Examples

			Divisors of 12 are 1 2 3 4 6 12.
And 2 == 12 mod 5.
We get a(12) = 2 + 3 + 12 = 17.
		

Crossrefs

Cf. A003106, A284150 (Sum_{d|n, d==1 or 4 mod 5} d).

Formula

a(n) = A000203(n) -5*A000203(n/5) -A284150(n), where A000203(.) =0 for non-integer arguments. - R. J. Mathar, Mar 21 2017
a(n) = A284280(n) + A284281(n). - Seiichi Manyama, Mar 24 2017

A333374 G.f.: Sum_{k>=1} (x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)/(1 - x^j)).

Original entry on oeis.org

1, 0, 1, 2, 2, 2, 3, 4, 6, 8, 10, 12, 15, 18, 22, 28, 34, 42, 52, 62, 75, 90, 106, 126, 150, 176, 208, 246, 288, 338, 397, 462, 538, 626, 724, 838, 968, 1114, 1282, 1474, 1690, 1936, 2217, 2532, 2890, 3296, 3750, 4264, 4844, 5492, 6222, 7042, 7958, 8986, 10138
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 17 2020

Keywords

Comments

The g.f. Sum_{k >= 1} x^(k*(k+1)) * Product_{j = 1..k} (1 + x^j)/(1 - x^j) = Sum_{k >= 1} x^(k*(k+1)) * Product_{j = 1..k} (1 + x^j)/(1 - x^j + 2*x^j) == Sum_{k >= 1} x^(k*(k+1)) (mod 2). It follows that a(n) is odd iff n = k*(k + 1) for some nonnegative integer k. - Peter Bala, Jan 04 2025

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[(1+x^k)/(1-x^k), {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Normal[Series[p*(1 + x^k)/(1 - x^k)*x^(2*k), {x, 0, nmax}]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

Limit_{n->infinity} A066447(n) / a(n) = A058265 = (1 + (19+3*sqrt(33))^(1/3) + (19-3*sqrt(33))^(1/3))/3 = 1.839286755214... (the tribonacci constant).
Compare with: A306734(n) / A333179(n) -> A060006 (the plastic constant) and A003114(n) / A003106(n) -> A001622 (golden ratio).
a(n) ~ c * d^sqrt(n) / n^(3/4), where d = A376841 = 7.1578741786143524880205... = exp(2*sqrt(log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))) and c = 0.10511708841962944170826735560432... = (log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))^(1/4) * sqrt(1/24 - sinh(arcsinh(sqrt(11)/4)/3) / (12*sqrt(11))) / sqrt(Pi), where r = A192918 = 0.54368901269207636157... is the real root of the equation r^2*(1+r) = 1-r. - Vaclav Kotesovec, Mar 17 2020, updated Oct 10 2024

A035406 Limit of the position of the n-th partition into parts 5k+2 or 5k+3 in the list of all integer partitions sorted in reverse lexicographic order, for integers == 1 (mod 5).

Original entry on oeis.org

5, 10, 46, 58, 63, 70, 86, 89, 273, 287, 296, 299, 354, 361, 376, 397, 400, 404, 412, 485, 490, 501, 1213, 1227, 1236, 1239, 1310, 1312, 1337, 1344, 1352, 1383, 1388, 1561, 1564, 1573, 1588, 1600, 1621, 1624, 1628, 1636, 1736, 1741, 1772, 1777, 1790, 1834
Offset: 1

Views

Author

Keywords

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.

Crossrefs

Extensions

Revised by Geoffrey Caveney and Sean A. Irvine, Sep 03 2025

A035407 Limit of the position of the n-th partition into parts 5k+2 or 5k+3 in the list of all integer partitions sorted in reverse lexicographic order, for integers == 2 (mod 5).

Original entry on oeis.org

1, 10, 15, 70, 86, 89, 100, 102, 127, 134, 376, 397, 400, 404, 412, 485, 490, 501, 511, 513, 539, 547, 565, 570, 658, 661, 670, 1600, 1621, 1624, 1628, 1636, 1736, 1741, 1772, 1777, 1790, 1834, 1837, 1846, 2049, 2056, 2069, 2090, 2092, 2118, 2126, 2133, 2145
Offset: 1

Views

Author

Keywords

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.

Crossrefs

Extensions

Revised by Geoffrey Caveney and Sean A. Irvine, Sep 03 2025

A035408 Limit of the position of the n-th partition into parts 5k+2 or 5k+3 in the list of all integer partitions sorted in reverse lexicographic order, for integers == 3 (mod 5).

Original entry on oeis.org

1, 15, 24, 27, 100, 102, 127, 134, 144, 149, 180, 185, 511, 513, 539, 547, 565, 570, 658, 661, 670, 689, 694, 730, 742, 747, 752, 768, 771, 887, 894, 907, 2090, 2092, 2118, 2126, 2133, 2145, 2150, 2283, 2288, 2332, 2335, 2344, 2355, 2358, 2413, 2420, 2671
Offset: 1

Views

Author

Keywords

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.

Crossrefs

Extensions

Revised by Geoffrey Caveney and Sean A. Irvine, Sep 03 2025

A035409 Limit of the position of the n-th partition into parts 5k+2 or 5k+3 in the list of all integer partitions sorted in reverse lexicographic order, for integers == 4 (mod 5).

Original entry on oeis.org

3, 24, 27, 31, 39, 144, 149, 180, 185, 196, 205, 210, 254, 257, 266, 689, 694, 730, 742, 747, 752, 768, 771, 887, 894, 907, 916, 925, 930, 984, 1000, 1003, 1012, 1037, 1044, 1180, 1185, 1196, 2719, 2724, 2760, 2772, 2777, 2784, 2800, 2803, 2984, 2993, 2996
Offset: 1

Views

Author

Keywords

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.

Crossrefs

Extensions

Revised by Geoffrey Caveney and Sean A. Irvine, Sep 03 2025

A035410 Limit of the position of the n-th partition into parts 5k+2 or 5k+3 in the list of all integer partitions sorted in reverse lexicographic order, for integers == 0 (mod 5).

Original entry on oeis.org

3, 5, 31, 39, 46, 58, 63, 196, 205, 210, 254, 257, 266, 273, 287, 296, 299, 354, 361, 916, 925, 930, 984, 1000, 1003, 1012, 1037, 1044, 1180, 1185, 1196, 1213, 1227, 1236, 1239, 1310, 1312, 1337, 1344, 1352, 1383, 1388, 1561, 1564, 1573, 1588, 3507, 3516, 3521
Offset: 1

Views

Author

Keywords

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.

Crossrefs

Extensions

Revised by Geoffrey Caveney and Sean A. Irvine, Sep 03 2025
Previous Showing 21-30 of 99 results. Next