cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 73 results. Next

A240556 Earliest nonnegative increasing sequence with no 5-term subsequence of constant third differences.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 11, 15, 16, 27, 47, 48, 64, 95, 175, 196, 211, 212, 214, 247, 249, 252, 398, 839, 1002, 1014, 1016, 1035, 1036, 1037, 1051, 1054, 1072, 1121, 1143, 1146, 1172, 1258, 4271, 4282, 4284, 4336, 4571, 4578, 4582, 4598, 4613, 4622, 4628, 4646
Offset: 1

Views

Author

T. D. Noe, Apr 09 2014

Keywords

Comments

For the positive sequence, see A240557, which is this sequence plus 1. Is there a simple way of determining this sequence, as in the case of the no 3-term arithmetic progression?

Examples

			After (0, 1, 2, 3, 5, 7), the number 10 is excluded since else the subsequence (0, 2, 3, 5, 10) would have successive 1st, 2nd and 3rd differences (2, 1, 2, 5), (-1, 1, 3) and (2, 2), which is constant and thus excluded.
		

Crossrefs

Cf. A240557 (starting with 1).
No 3-term AP: A005836 (>=0), A003278 (>0);
no 4-term AP: A240075 (>=0), A240555 (>0);
no 5-term AP: A020654 (>=0), A020655 (>0);
no 6-term AP: A020656 (>=0), A005838 (>0);
no 7-term AP: A020657 (>=0), A020658 (>0);
no 8-term AP: A020659 (>=0), A020660 (>0);
no 9-term AP: A020661 (>=0), A020662 (>0);
no 10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 and A240555 for sequences avoiding 4-term subsequences with constant second differences.

Programs

  • Mathematica
    t = {0, 1, 2, 3}; Do[s = Table[Append[i, n], {i, Subsets[t, {4}]}]; If[! MemberQ[Flatten[Table[Differences[i, 4], {i, s}]], 0], AppendTo[t, n]], {n, 4, 5000}]; t
  • PARI
    A240556(n,show=0,L=5,o=3,v=[0],D=v->v[2..-1]-v[1..-2])={ my(d,m); while( #v1,);#Set(d)>1||next(2),2);break));v[#v]} \\ M. F. Hasler, Jan 12 2016

A240557 Earliest positive increasing sequence with no 5-term subsequence of constant third differences.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 17, 28, 48, 49, 65, 96, 176, 197, 212, 213, 215, 248, 250, 253, 399, 840, 1003, 1015, 1017, 1036, 1037, 1038, 1052, 1055, 1073, 1122, 1144, 1147, 1173, 1259, 4272, 4283, 4285, 4337, 4572, 4579, 4583, 4599, 4614, 4623, 4629, 4647
Offset: 1

Views

Author

T. D. Noe, Apr 09 2014

Keywords

Comments

For the nonnegative sequence, see A240556, which is this sequence minus 1. Is there a simple way of determining this sequence, as in the case of the no 3-term arithmetic progression?
See crossreferences for sequences avoiding arithmetic progressions. - M. F. Hasler, Jan 12 2016

Crossrefs

Cf. A240556 (starting with 0).
No 3-term AP: A005836 (>=0), A003278 (>0);
no 4-term AP: A240075 (>=0), A240555 (>0);
no 5-term AP: A020654 (>=0), A020655 (>0);
no 6-term AP: A020656 (>=0), A005838 (>0);
no 7-term AP: A020657 (>=0), A020658 (>0);
no 8-term AP: A020659 (>=0), A020660 (>0);
no 9-term AP: A020661 (>=0), A020662 (>0);
no 10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 and A240555 for sequences avoiding 4-term subsequences with constant second differences.

Programs

  • Mathematica
    t = {1, 2, 3, 4}; Do[s = Table[Append[i, n], {i, Subsets[t, {4}]}]; If[! MemberQ[Flatten[Table[Differences[i, 4], {i, s}]], 0], AppendTo[t, n]], {n, 5, 5000}]; t
  • PARI
    A240557(n,show=0,L=5,o=3,v=[1],D=v->v[2..-1]-v[1..-2])={ my(d,m); while( #v1,);#Set(d)>1||next(2),2);break));v[#v]} \\ M. F. Hasler, Jan 12 2016

Extensions

Definition corrected by M. F. Hasler, Jan 12 2016

A055246 At step number k >= 1 the 2^(k-1) open intervals that are erased from [0,1] in the Cantor middle-third set construction are I(k,n) = (a(n)/3^k, (1+a(n))/3^k), n=1..2^(k-1).

Original entry on oeis.org

1, 7, 19, 25, 55, 61, 73, 79, 163, 169, 181, 187, 217, 223, 235, 241, 487, 493, 505, 511, 541, 547, 559, 565, 649, 655, 667, 673, 703, 709, 721, 727, 1459, 1465, 1477, 1483, 1513, 1519, 1531, 1537, 1621, 1627, 1639, 1645, 1675, 1681, 1693, 1699
Offset: 1

Views

Author

Wolfdieter Lang, May 23 2000

Keywords

Comments

Related to A005836. Gives boundaries of open intervals that have to be erased in the Cantor middle-third set construction.
Let g(n) = Sum_{i=0..n} (i*binomial(n+i,i)^3*binomial(n,i)^2) = A112035(n). Let b = {m>0 : g(m) != 0 (mod 3)}. Then b(n) = a(n). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 08 2004
Conjecture: Similarly to A191107, this increasing sequence is generated by the rules: a(1) = 1, and if x is in the sequence, then 3*x-2 and 3*x+4 are also in the sequence. - L. Edson Jeffery, Nov 17 2015

Examples

			k=1: (1/3, 2/3);
k=2: (1/9, 2/9), (7/9, 8/9);
k=3: (1/27, 2/27), (7/27, 8/27), (19/27, 20/27), (25/27, 26/27); ...
		

Crossrefs

Programs

  • Mathematica
    (* (Conjectured) Choose rows large enough to guarantee that all terms < max are generated. *)
    rows = 1000; max = 10^4; a[1] = {1}; i = 1; Do[a[n_] = {}; Do[If[1 < 3*a[n - 1][[k]] - 2 < max, AppendTo[a[n], 3*a[n - 1][[k]] - 2], Break]; If[3*a[n - 1][[k]] + 4 < max, AppendTo[a[n], 3*a[n - 1][[k]] + 4], Break], {k, Length[a[n - 1]]}]; If[a[n] == {}, Break, i++], {n, 2, 1000}]; a055246 = Take[Flatten[Table[a[n], {n, i}]], 48] (* L. Edson Jeffery, Nov 17 2015 *)
    Join[{1}, 1 + 6 Accumulate[Table[(3^IntegerExponent[n, 2] + 1)/2, {n, 60}]]] (* Vincenzo Librandi, Nov 26 2015 *)
  • PARI
    g(n)=sum(i=0,n,i*binomial(n+i,i)^3*binomial(n,i)^2);
    for (i=1,2000,if(Mod(g(i),3)<>0,print1(i,",")))
    
  • PARI
    a(n) = fromdigits(binary(n-1),3)*6 + 1; \\ Kevin Ryde, Apr 23 2021
    
  • Python
    def A055246(n): return int(bin(n-1)[2:],3)*6|1 # Chai Wah Wu, Jun 26 2025

Formula

a(n) = 1+6*A005836(n), n >= 1.
a(n) = 1+3*A005823(n), n >= 1.
a(n+1) = A074938(n) + A074939(n); A074938: odd numbers in A005836, A074939: even numbers in A005836. - Philippe Deléham, Jul 10 2005
Conjecture: a(n) = 2*A191107(n) - 1 = 6*A003278(n) - 5 = (a((2*n-1)*2^(k-1))+2)/3^k, k>0. - L. Edson Jeffery, Nov 25 2015

Extensions

Edited by N. J. A. Sloane, Nov 20 2015: used first comment to give more precise definition, and edited a comment at the suggestion of L. Edson Jeffery.

A309890 Lexicographically earliest sequence of positive integers without triples in weakly increasing arithmetic progression.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 2, 4, 4, 5, 5, 10, 5, 5, 10, 10, 11, 13, 10, 11, 10, 11, 13, 10, 10, 12, 13, 10, 13, 11, 12, 20, 11, 1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2
Offset: 1

Views

Author

Sébastien Palcoux, Aug 21 2019

Keywords

Comments

Formal definition: lexicographically earliest sequence of positive integers a(n) such that for any i > 0, there is no n > 0 such that 2a(n+i) = a(n) + a(n+2i) AND a(n) <= a(n+i) <= a(n+2i).
Sequence suggested by Richard Stanley as a variant of A229037. They differ from the 55th term. The numbers n for which a(n) = 1 are given by A003278, or equally by A005836 (Richard Stanley).
The sequence defined by c(n) = 1 if a(n) = 1 and otherwise c(n) = 0 is A039966 (although with a different offset). - N. J. A. Sloane, Dec 01 2019
Pleasant to listen to (button above) with Instrument no. 13: Marimba (and for better listening, save and convert to MP3).

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def A309890_gen(): # generator of terms
        blist = []
        for n in count(0):
            i, j, b = 1, 1, set()
            while n-(i<<1) >= 0:
                x, y = blist[n-2*i], blist[n-i]
                z = (y<<1)-x
                if x<=y<=z:
                    b.add(z)
                    while j in b:
                        j += 1
                i += 1
            blist.append(j)
            yield j
    A309890_list = list(islice(A309890_gen(),30)) # Chai Wah Wu, Sep 12 2023
  • SageMath
    # %attach SAGE/ThreeFree.spyx
    from sage.all import *
    cpdef ThreeFree(int n):
         cdef int i,j,k,s,Li,Lj
         cdef list L,Lb
         cdef set b
         L=[1,1]
         for k in range(2,n):
              b=set()
              for i in range(k):
                   if 2*((i+k)/2)==i+k:
                        j=(i+k)/2
                        Li,Lj=L[i],L[j]
                        s=2*Lj-Li
                        if s>0 and Li<=Lj:
                             b.add(s)
              if 1 not in b:
                   L.append(1)
              else:
                   Lb=list(b)
                   Lb.sort()
                   for t in Lb:
                        if t+1 not in b:
                             L.append(t+1)
                             break
         return L
    

A191107 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 3x+1 are in a.

Original entry on oeis.org

1, 4, 10, 13, 28, 31, 37, 40, 82, 85, 91, 94, 109, 112, 118, 121, 244, 247, 253, 256, 271, 274, 280, 283, 325, 328, 334, 337, 352, 355, 361, 364, 730, 733, 739, 742, 757, 760, 766, 769, 811, 814, 820, 823, 838, 841, 847, 850, 973, 976, 982, 985, 1000, 1003, 1009, 1012, 1054, 1057, 1063, 1066, 1081, 1084, 1090, 1093, 2188
Offset: 1

Views

Author

Clark Kimberling, May 26 2011

Keywords

Comments

For general discussions, see A190803 and A191106.
Numbers whose base-3 representation ends in 1 and contains no 2; primitive members of A005836. - Peter Munn, Aug 14 2023

Crossrefs

Programs

  • Maple
    N:= 100000: # to get all terms <= N
    with(queue):
    Q:= new(1):
    A:= {}:
    while not empty(Q) do
      s:= dequeue(Q);
      A:= A union {s};
      for t in {3*s-2,3*s+1} minus A do
        if t <= N then enqueue(Q,t) fi
      od
    od:
    sort(convert(A,list)); # Robert Israel, Nov 29 2015
  • Mathematica
    h = 3; i = -2; j = 3; k = 1; f = 1;  g = 7;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191107 *)
    b = (a + 2)/3; c = (a - 1)/3; r = Range[1, 900];
    d = Intersection[b, r] (* A003278 *)
    e = Intersection[c, r] (* A005836 *)

Formula

Conjecture: a(n) = 3*A003278(n) - 2 = (A055246(n) + 1)/2. - L. Edson Jeffery, Nov 25 2015
Conjecture: a(n) = A190640(n)/2. - Michel Marcus, Aug 24 2016
Conjecture: a(n) = A003278(2n-1). - Arie Bos, Aug 07 2022

A026471 a(n) = least positive integer > a(n-1) and not of the form a(i) + a(j) + a(k) for 1 <= i < j < k <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 13, 14, 15, 25, 26, 27, 37, 38, 48, 49, 50, 60, 61, 71, 72, 73, 83, 84, 94, 95, 96, 106, 107, 117, 118, 119, 129, 130, 140, 141, 142, 152, 153, 163, 164, 165, 175, 176, 186, 187, 188, 198, 199, 209, 210, 211, 221, 222, 232, 233, 234, 244, 245, 255
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{1, 5, 13} union {n congruent 2, 3, 4, 14, 15 mod 23}, proved by Matthew Akeran. - Ralf Stephan, Nov 15 2004
G.f.: (9*x^11-7*x^10+9*x^8+7*x^5+x^4+x^3+x^2+x+1)*x/(x^6-x^5-x+1). - Alois P. Heinz, Aug 06 2018

Extensions

Edited by Floor van Lamoen, Sep 02 2002

A101886 Smallest natural number sequence without any length 4 equidistant arithmetic subsequences.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 14, 15, 16, 18, 19, 20, 22, 24, 27, 28, 29, 31, 32, 35, 36, 37, 39, 41, 42, 43, 47, 48, 50, 51, 53, 55, 58, 60, 61, 63, 65, 66, 68, 70, 71, 72, 77, 78, 80, 82, 85, 86, 87, 89, 90, 91, 94, 95, 96, 98, 99, 100, 102, 103, 104, 107, 109, 110, 111, 114
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 20 2004

Keywords

Examples

			4 is out because of 1,2,3,4. 13 is out because of 1,5,9,13.
		

Crossrefs

A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

A101888 Smallest natural number sequence without any length 5 equidistant arithmetic subsequences.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 86, 87, 88, 90, 91, 92, 93, 95
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 20 2004

Keywords

Examples

			5 is out because of 1,2,3,4,5. 21 is out because of 1,6,11,16,21.
		

Crossrefs

A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

A267300 Earliest positive increasing sequence having no 5-term subsequence with constant second differences.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 11, 13, 16, 19, 20, 22, 24, 30, 31, 36, 45, 46, 52, 55, 60, 62, 63, 66, 69, 71, 75, 86, 89, 92, 103, 111, 115, 119, 134, 137, 145, 152, 163, 176, 178, 179, 196, 200, 220, 223, 275, 276, 278, 281, 282, 284, 286, 294, 304, 316, 319, 326, 339, 353, 360, 363, 376, 379, 384, 390, 402, 414, 423, 429, 442
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2016

Keywords

Crossrefs

Cf. A267301 (positive variant: starting with 1).
No 3-term AP: A005836 (>=0), A003278 (>0);
no 4-term AP: A240075 (>=0), A240555 (>0);
no 5-term AP: A020654 (>=0), A020655 (>0);
no 6-term AP: A020656 (>=0), A005838 (>0);
no 7-term AP: A020657 (>=0), A020658 (>0);
no 8-term AP: A020659 (>=0), A020660 (>0);
no 9-term AP: A020661 (>=0), A020662 (>0);
no 10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 and A240555 for sequences avoiding 4-term subsequences with constant second differences.
Cf. A240556 and A240557 for sequences avoiding 5-term subsequences with constant third differences.

Programs

  • PARI
    A267300(n, show=0, L=5, o=2, v=[0], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016

A267301 Earliest positive increasing sequence having no 5-term subsequence with constant second differences.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 17, 20, 21, 23, 25, 31, 32, 37, 46, 47, 53, 56, 61, 63, 64, 67, 70, 72, 76, 87, 90, 93, 104, 112, 116, 120, 135, 138, 146, 153, 164, 177, 179, 180, 197, 201, 221, 224, 276, 277, 279, 282, 283, 285, 287, 295, 305, 317, 320, 327, 340, 354, 361, 364, 377, 380, 385, 391, 403, 415, 424, 430, 443
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2016

Keywords

Crossrefs

Cf. A267300 (nonnegative variant: starting with 0).
No 3-term AP: A005836 (>=0), A003278 (>0);
no 4-term AP: A240075 (>=0), A240555 (>0);
no 5-term AP: A020654 (>=0), A020655 (>0);
no 6-term AP: A020656 (>=0), A005838 (>0);
no 7-term AP: A020657 (>=0), A020658 (>0);
no 8-term AP: A020659 (>=0), A020660 (>0);
no 9-term AP: A020661 (>=0), A020662 (>0);
no 10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 and A240555 for sequences avoiding 4-term subsequences with constant second differences.
Cf. A240556 and A240557 for sequences avoiding 5-term subsequences with constant third differences.

Programs

  • PARI
    A267301(n, show=0, L=5, o=2, v=[1], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016
Previous Showing 31-40 of 73 results. Next