cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A003359 Numbers that are the sum of 3 nonzero 6th powers.

Original entry on oeis.org

3, 66, 129, 192, 731, 794, 857, 1459, 1522, 2187, 4098, 4161, 4224, 4826, 4889, 5554, 8193, 8256, 8921, 12288, 15627, 15690, 15753, 16355, 16418, 17083, 19722, 19785, 20450, 23817, 31251, 31314, 31979, 35346, 46658, 46721, 46784, 46875, 47386, 47449
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
149781746 is in the sequence as 149781746 = 5^6 + 20^6 + 21^6.
244687691 is in the sequence as 244687691 = 5^6 + 9^6 + 25^6.
617835648 is in the sequence as 617835648 = 4^6 + 26^6 + 26^6. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A004822 Numbers that are the sum of 11 positive 11th powers.

Original entry on oeis.org

11, 2058, 4105, 6152, 8199, 10246, 12293, 14340, 16387, 18434, 20481, 22528, 177157, 179204, 181251, 183298, 185345, 187392, 189439, 191486, 193533, 195580, 197627, 354303, 356350, 358397, 360444, 362491, 364538, 366585, 368632, 370679, 372726, 531449, 533496, 535543
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
460807606 is in the sequence as 460807606 = 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 3^11 + 3^11 + 5^11 + 5^11 + 6^11.
795925198 is in the sequence as 795925198 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 4^11 + 4^11 + 5^11 + 6^11 + 6^11.
1504395992 is in the sequence as 1504395992 = 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 4^11 + 5^11 + 6^11 + 6^11 + 6^11 + 6^11. (End)
		

Crossrefs

Cf. A008455.
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Mathematica
    M = 6347807907; m = M^(1/11) // Ceiling; Reap[
    For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
    For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
    For[g = f, g <= m, g++, For[h = g, h <= m, h++, For[i = h, i <= m, i++,
    For[j = i, j <= m, j++, For[k = j, k <= m, k++,
    s = a^11+b^11+c^11+d^11+e^11+f^11+g^11+h^11+i^11+j^11+k^11;
    If[s <= M, Sow[s]]]]]]]]]]]]]][[2, 1]] // Union (* Jean-François Alcover, Dec 01 2020 *)

A003364 Numbers that are the sum of 8 positive 6th powers.

Original entry on oeis.org

8, 71, 134, 197, 260, 323, 386, 449, 512, 736, 799, 862, 925, 988, 1051, 1114, 1177, 1464, 1527, 1590, 1653, 1716, 1779, 1842, 2192, 2255, 2318, 2381, 2444, 2507, 2920, 2983, 3046, 3109, 3172, 3648, 3711, 3774, 3837, 4103, 4166, 4229, 4292, 4355, 4376, 4418, 4439, 4481
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
167223 is in the sequence as 167223 = 1^6 + 1^6 + 3^6 + 3^6 + 3^6 + 3^6 + 6^6 + 7^6.
290366 is in the sequence as 290366 = 1^6 + 4^6 + 4^6 + 5^6 + 5^6 + 5^6 + 7^6 + 7^6.
443086 is in the sequence as 443086 = 2^6 + 3^6 + 5^6 + 5^6 + 5^6 + 5^6 + 7^6 + 8^6. (End)
		

Crossrefs

Cf. A001014 (sixth powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A003371 Numbers that are the sum of 4 positive 7th powers.

Original entry on oeis.org

4, 131, 258, 385, 512, 2190, 2317, 2444, 2571, 4376, 4503, 4630, 6562, 6689, 8748, 16387, 16514, 16641, 16768, 18573, 18700, 18827, 20759, 20886, 22945, 32770, 32897, 33024, 34956, 35083, 37142, 49153, 49280, 51339, 65536, 78128, 78255, 78382, 78509
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			16768 is in the sequence as 16768 = 2^7 + 2^7 + 2^7 + 4^7;
18700 is in the sequence as 18700 = 1^7 + 2^7 + 3^7 + 4^7;
65536 is in the sequence as 65536 = 4^7 + 4^7 + 4^7 + 4^7.
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Incorrect program removed by David A. Corneth, Aug 01 2020

A003373 Numbers that are the sum of 6 positive 7th powers.

Original entry on oeis.org

6, 133, 260, 387, 514, 641, 768, 2192, 2319, 2446, 2573, 2700, 2827, 4378, 4505, 4632, 4759, 4886, 6564, 6691, 6818, 6945, 8750, 8877, 9004, 10936, 11063, 13122, 16389, 16516, 16643, 16770, 16897, 17024, 18575, 18702, 18829, 18956, 19083, 20761, 20888
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
3077074 is in the sequence as 3077074 = 1^7 + 2^7 + 5^7 + 5^7 + 7^7 + 8^7.
7160441 is in the sequence as 7160441 = 2^7 + 2^7 + 2^7 + 6^7 + 8^7 + 9^7.
12921079 is in the sequence as 12921079 = 2^7 + 2^7 + 2^7 + 7^7 + 8^7 + 10^7. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A003382 Numbers that are the sum of 4 nonzero 8th powers.

Original entry on oeis.org

4, 259, 514, 769, 1024, 6564, 6819, 7074, 7329, 13124, 13379, 13634, 19684, 19939, 26244, 65539, 65794, 66049, 66304, 72099, 72354, 72609, 78659, 78914, 85219, 131074, 131329, 131584, 137634, 137889, 144194, 196609, 196864, 203169, 262144
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1246103043 is in the sequence as 1246103043 = 1^8 + 5^8 + 12^8 + 13^8.
4194358628 is in the sequence as 4194358628 = 3^8 + 13^8 + 13^8 + 15^8.
5148323267 is in the sequence as 5148323267 = 7^8 + 8^8 + 15^8 + 15^8. (End)
		

Crossrefs

Cf. A001016 (8th powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Maple
    A003382 := proc(nmax::integer)
        local a, x,x8,y,y8,z,z8,u,u8 ;
        a := {} ;
        for x from 1 do
            x8 := x^8 ;
            if 4*x8 > nmax then
                break;
            end if;
            for y from x do
                y8 := y^8 ;
                if x8+3*y8 > nmax then
                    break;
                end if;
                for z from y do
                    z8 := z^8 ;
                    if x8+y8+2*z8 > nmax then
                        break;
                    end if;
                    for u from z do
                        u8 := u^8 ;
                        if x8+y8+z8+u8 > nmax then
                            break;
                        end if;
                        if x8+y8+z8+u8 <= nmax then
                            a := a  union {x8+y8+z8+u8} ;
                        end if;
                    end do:
                end do:
            end do:
        end do:
        sort(convert(a,list)) ;
    end proc:
    nmax := 102400000000 ;
    L:= A003382(nmax) ;
    LISTTOBFILE(L,"b003382.txt",1) ; # R. J. Mathar, Aug 01 2020
  • Mathematica
    M = 102400000000;
    m = M^(1/8) // Ceiling;
    Table[s = a^8+b^8+c^8+d^8; If[s>M, Nothing, s], {a, m}, {b, m}, {c, m}, {d, m}] // Flatten // Union (* Jean-François Alcover, Dec 01 2020 *)

Extensions

Incorrect program removed by David A. Corneth, Aug 01 2020

A003383 Numbers that are the sum of 5 nonzero 8th powers.

Original entry on oeis.org

5, 260, 515, 770, 1025, 1280, 6565, 6820, 7075, 7330, 7585, 13125, 13380, 13635, 13890, 19685, 19940, 20195, 26245, 26500, 32805, 65540, 65795, 66050, 66305, 66560, 72100, 72355, 72610, 72865, 78660, 78915, 79170, 85220, 85475, 91780, 131075
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
100131584 is in the sequence as 100131584 = 2^8 + 2^8 + 4^8 + 4^8 + 10^8.
320123684 is in the sequence as 320123684 = 1^8 + 1^8 + 7^8 + 10^8 + 11^8.
750105634 is in the sequence as 750105634 = 2^8 + 7^8 + 10^8 + 11^8 + 12^8. (End)
		

Crossrefs

Cf. A001016 (8th powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Maple
    A003383 := proc(nmax::integer)
        local a, x,x8,y,y8,z,z8,u,u8,v,v8 ;
        a := {} ;
        for x from 1 do
            x8 := x^8 ;
            if 5*x8 > nmax then
                break;
            end if;
            for y from x do
                y8 := y^8 ;
                if x8+4*y8 > nmax then
                    break;
                end if;
                for z from y do
                    z8 := z^8 ;
                    if x8+y8+3*z8 > nmax then
                        break;
                    end if;
                    for u from z do
                        u8 := u^8 ;
                        if x8+y8+z8+2*u8 > nmax then
                            break;
                        end if;
                        for v from u do
                            v8 := v^8 ;
                            if x8+y8+z8+u8+v8 > nmax then
                                break;
                            end if;
                            if x8+y8+z8+u8+v8 <= nmax then
                                a := a  union {x8+y8+z8+u8+v8} ;
                            end if;
                        end do:
                    end do:
                end do:
            end do:
        end do:
        sort(convert(a,list)) ;
    end proc:
    nmax := 500000000 ; ;
    L:= A003383(nmax) ;
    LISTTOBFILE(L,"b003383.txt",1) ; # R. J. Mathar, Aug 01 2020
  • Mathematica
    M = 3784086305;
    m = M^(1/8) // Ceiling;
    Table[s = a^8+b^8+c^8+d^8+e^8; If[s>M, Nothing, s], {a, m}, {b, m}, {c, m}, {d, m}, {e, m}] // Flatten // Union (* Jean-François Alcover, Dec 01 2020 *)

A003384 Numbers that are the sum of 6 nonzero 8th powers.

Original entry on oeis.org

6, 261, 516, 771, 1026, 1281, 1536, 6566, 6821, 7076, 7331, 7586, 7841, 13126, 13381, 13636, 13891, 14146, 19686, 19941, 20196, 20451, 26246, 26501, 26756, 32806, 33061, 39366, 65541, 65796, 66051, 66306, 66561, 66816, 72101, 72356, 72611, 72866, 73121
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
23063715 is in the sequence as 23063715 = 1^8 + 4^8 + 4^8 + 5^8 + 7^8 + 8^8.
93544421 is in the sequence as 93544421 = 1^8 + 3^8 + 6^8 + 7^8 + 9^8 + 9^8.
120267520 is in the sequence as 120267520 = 4^8 + 4^8 + 6^8 + 6^8 + 8^8 + 10^8. (End)
		

Crossrefs

Cf. A133093.
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Formula

Row sums of A133093(n+1). - Gary W. Adamson, Sep 09 2007

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A003385 Numbers that are the sum of 7 nonzero 8th powers.

Original entry on oeis.org

7, 262, 517, 772, 1027, 1282, 1537, 1792, 6567, 6822, 7077, 7332, 7587, 7842, 8097, 13127, 13382, 13637, 13892, 14147, 14402, 19687, 19942, 20197, 20452, 20707, 26247, 26502, 26757, 27012, 32807, 33062, 33317, 39367, 39622, 45927, 65542, 65797, 66052
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001016 (8th powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Maple
    A003385 := proc(nmax::integer)
        local a, x,x8,y,y8,z,z8,u,u8,v,v8,w,w8,t,t8 ;
        a := {} ;
        for x from 1 do
            x8 := x^8 ;
            if 7*x8 > nmax then
                break;
            end if;
            for y from x do
                y8 := y^8 ;
                if x8+6*y8 > nmax then
                    break;
                end if;
                for z from y do
                    z8 := z^8 ;
                    if x8+y8+5*z8 > nmax then
                        break;
                    end if;
                    for u from z do
                        u8 := u^8 ;
                        if x8+y8+z8+4*u8 > nmax then
                            break;
                        end if;
                        for v from u do
                            v8 := v^8 ;
                            if x8+y8+z8+u8+3*v8 > nmax then
                                break;
                            end if;
                            for w from v do
                                w8 := w^8 ;
                                if x8+y8+z8+u8+v8+2*w8 > nmax then
                                    break;
                                end if;
                                for t from w do
                                    t8 := t^8 ;
                                    if x8+y8+z8+u8+v8+w8+t8 > nmax then
                                        break;
                                    end if;
                                    if x8+y8+z8+u8+v8+w8+t8 <= nmax then
                                        a := a  union {x8+y8+z8+u8+v8+w8+t8} ;
                                    end if;
                                end do:
                            end do:
                        end do:
                    end do:
                end do:
            end do:
        end do:
        sort(convert(a,list)) ;
    end proc:
    nmax := 117440512 ;
    L:= A003385(nmax) ;
    LISTTOBFILE(L,"b003385.txt",1) ; # R. J. Mathar, Aug 01 2020
  • Mathematica
    M = 217168099;
    m = M^(1/8) // Ceiling;
    Table[s = a^8+b^8+c^8+d^8+e^8+f^8+g^8; If[s>M, Nothing, s], {a, m}, {b, m}, {c, m}, {d, m}, {e, m}, {f, m}, {g, m}] // Flatten // Union (* Jean-François Alcover, Dec 01 2020 *)
  • PARI
    \\ also works for nmax=117440512 producing 6751 terms
    nmax=67000;v=vectorsmall(nmax);L=ceil(#v^(1/8));for(k1=1,L, for(k2=k1,L, for(k3=k2,L, for(k4=k3,L, for(k5=k4,L, for(k6=k5,L, for(k7=k6,L, my(s=k1^8+k2^8+k3^8+k4^8+k5^8+k6^8+k7^8); if(s<=#v,v[s]++))))))));for(k=1,#v,if(v[k],print1(k,", "))) \\ Hugo Pfoertner, Aug 01 2020

Extensions

Incorrect program removed by David A. Corneth, Aug 04 2020

A003387 Numbers that are the sum of 9 nonzero 8th powers.

Original entry on oeis.org

9, 264, 519, 774, 1029, 1284, 1539, 1794, 2049, 2304, 6569, 6824, 7079, 7334, 7589, 7844, 8099, 8354, 8609, 13129, 13384, 13639, 13894, 14149, 14404, 14659, 14914, 19689, 19944, 20199, 20454, 20709, 20964, 21219, 26249, 26504, 26759, 27014, 27269
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
5820102 is in the sequence as 5820102 = 1^8 + 1^8 + 1^8 + 1^8 + 5^8 + 5^8 + 6^8 + 6^8 + 6^8.
9960580 is in the sequence as 9960580 = 5^8 + 5^8 + 5^8 + 5^8 + 6^8 + 6^8 + 6^8 + 6^8 + 6^8.
11260068 is in the sequence as 11260068 = 1^8 + 1^8 + 2^8 + 4^8 + 5^8 + 6^8 + 6^8 + 6^8 + 7^8. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Maple
    A003387 := proc(nmax::integer)
        local a, x,x8,y,y8,z,z8,u,u8,v,v8,w,w8,t,t8,s,s8,r,r8 ;
        a := {} ;
        for x from 1 do
            x8 := x^8 ;
            if 9*x8 > nmax then
                break;
            end if;
            for y from x do
                y8 := y^8 ;
                if x8+8*y8 > nmax then
                    break;
                end if;
                for z from y do
                    z8 := z^8 ;
                    if x8+y8+7*z8 > nmax then
                        break;
                    end if;
                    for u from z do
                        u8 := u^8 ;
                        if x8+y8+z8+6*u8 > nmax then
                            break;
                        end if;
                        for v from u do
                            v8 := v^8 ;
                            if x8+y8+z8+u8+5*v8 > nmax then
                                break;
                            end if;
                            for w from v do
                                w8 := w^8 ;
                                if x8+y8+z8+u8+v8+4*w8 > nmax then
                                    break;
                                end if;
                                for t from w do
                                    t8 := t^8 ;
                                    if x8+y8+z8+u8+v8+w8+3*t8 > nmax then
                                        break;
                                    end if;
                                    for s from t do
                                        s8 := s^8 ;
                                        if x8+y8+z8+u8+v8+w8+t8+2*s8 > nmax then
                                            break;
                                        end if;
                                        for r from s do
                                            r8 := r^8 ;
                                            if x8+y8+z8+u8+v8+w8+t8+s8+r8 > nmax then
                                                break ;
                                            end if;
                                            if x8+y8+z8+u8+v8+w8+t8+s8+r8 <= nmax then
                                                a := a  union {x8+y8+z8+u8+v8+w8+t8+s8+r8} ;
                                            end if;
                                        end do:
                                    end do:
                                end do:
                            end do:
                        end do:
                    end do:
                end do:
            end do:
        end do:
        sort(convert(a,list)) ;
    end proc:
    nmax := 15116544 ;
    L:= A003387(nmax) ;
    LISTTOBFILE(L,"b003387.txt",1) ; # R. J. Mathar, Aug 01 2020
  • Mathematica
    M = 45711012; m = M^(1/8) // Ceiling; Reap[
    For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
    For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
    For[g = f, g <= m, g++, For[h = g, h <= m, h++, For[i = h, i <= m, i++,
    s = a^8 + b^8 + c^8 + d^8 + e^8 + f^8 + g^8 + h^8 + i^8;
    If[s <= M, Sow[s]]]]]]]]]]]][[2, 1]] // Union (* Jean-François Alcover, Dec 01 2020 *)

Extensions

Incorrect program removed by David A. Corneth, Aug 01 2020
Previous Showing 21-30 of 41 results. Next