cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 107 results. Next

A107326 Numbers of the form (2^i)*(13^j).

Original entry on oeis.org

1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 128, 169, 208, 256, 338, 416, 512, 676, 832, 1024, 1352, 1664, 2048, 2197, 2704, 3328, 4096, 4394, 5408, 6656, 8192, 8788, 10816, 13312, 16384, 17576, 21632, 26624, 28561, 32768, 35152, 43264, 53248, 57122
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), May 21 2005

Keywords

Comments

A204455(13*a(n)) = 13, and only for these numbers. - Wolfdieter Lang, Feb 04 2012

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PowerMod[26,n,n]==0; Select[Range[60000],fQ] (* Vincenzo Librandi, Feb 04 2012 *)
    mx = 60000; Sort@ Flatten@ Table[2^i*13^j, {i, 0, Log[2, mx]}, {j, 0, Log[13, mx/2^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
  • PARI
    list(lim)=my(v=List(),N); for(n=0,log(lim)\log(13),N=13^n; while(N<=lim,listput(v,N);N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011

Formula

Sum_{n>=1} 1/a(n) = (2*13)/((2-1)*(13-1)) = 13/6. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(2)*log(13)*n)) / sqrt(26). - Vaclav Kotesovec, Sep 23 2020

A107364 Numbers of the form (3^i)*(13^j).

Original entry on oeis.org

1, 3, 9, 13, 27, 39, 81, 117, 169, 243, 351, 507, 729, 1053, 1521, 2187, 2197, 3159, 4563, 6561, 6591, 9477, 13689, 19683, 19773, 28431, 28561, 41067, 59049, 59319, 85293, 85683, 123201, 177147, 177957, 255879, 257049, 369603, 371293, 531441
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), May 23 2005

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10^7] | PrimeDivisors(n) subset [3, 13]]; // Vincenzo Librandi, Jun 27 2016
  • Mathematica
    mx = 540000; Sort@ Flatten@ Table[3^i*13^j, {i, 0, Log[3, mx]}, {j, 0, Log[13, mx/3^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
    fQ[n_]:=PowerMod[39, n, n] == 0; Select[Range[2 10^7], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    

Formula

Sum_{n>=1} 1/a(n) = (3*13)/((3-1)*(13-1)) = 13/8. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(3)*log(13)*n)) / sqrt(39). - Vaclav Kotesovec, Sep 23 2020

A077497 Primes of the form 2^r*5^s + 1.

Original entry on oeis.org

2, 3, 5, 11, 17, 41, 101, 251, 257, 401, 641, 1601, 4001, 16001, 25601, 40961, 62501, 65537, 160001, 163841, 16384001, 26214401, 40960001, 62500001, 104857601, 167772161, 256000001, 409600001, 655360001, 2441406251, 2500000001, 4194304001, 10485760001
Offset: 1

Views

Author

Amarnath Murthy, Nov 07 2002

Keywords

Comments

These are also the prime numbers p for which there is an integer solution x to the equation p*x = p*10^p + x, or equivalently, the prime numbers p for which (p*10^p)/(p-1) is an integer. - Vicente Izquierdo Gomez, Feb 20 2013
For n > 2, all terms are congruent to 5 (mod 6). - Muniru A Asiru, Sep 03 2017

Examples

			101 is in the sequence, since 101 = 2^2*5^2 + 1 and 101 is prime.
		

Crossrefs

Programs

  • GAP
    K:=10^7;; # to get all terms <= K.
    A:=Filtered(Filtered([1..K],i-> i mod 6=5),IsPrime);;
    B:=List(A,i->Factors(i-1));;
    C:=[];;  for i in B do if Elements(i)=[2] or Elements(i)=[2,5]  then Add(C,Position(B,i)); fi; od;
    A077497:=Concatenation([2,3],List(C,i->A[i])); # Muniru A Asiru, Sep 03 2017
  • Mathematica
    Do[p=Prime[k];s=FindInstance[p x == p 10^p+x,x,Integers];If[s!={},Print[p]],{k,10000}] (* Vicente Izquierdo Gomez, Feb 20 2013 *)
  • PARI
    list(lim)=my(v=List(),t);for(r=0,log(lim)\log(5),t=5^r;while(t<=lim,if(isprime(t+1),listput(v,t+1)); t<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 29 2013
    

Extensions

Corrected and extended by Reinhard Zumkeller, Nov 19 2002
More terms from Ray Chandler, Aug 02 2003

A132741 Largest divisor of n having the form 2^i*5^j.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 16, 1, 2, 1, 20, 1, 2, 1, 8, 25, 2, 1, 4, 1, 10, 1, 32, 1, 2, 5, 4, 1, 2, 1, 40, 1, 2, 1, 4, 5, 2, 1, 16, 1, 50, 1, 4, 1, 2, 5, 8, 1, 2, 1, 20, 1, 2, 1, 64, 5, 2, 1, 4, 1, 10, 1, 8, 1, 2, 25, 4, 1, 2, 1, 80, 1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 32, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2007

Keywords

Comments

The range of this sequence, { a(n); n>=0 }, is equal to A003592. - M. F. Hasler, Dec 28 2015

Crossrefs

Cf. A379003 (ordinal transform), A379004 (rgs-transform).
Cf. also A355582.

Programs

  • Haskell
    a132741 = f 2 1 where
       f p y x | r == 0    = f p (y * p) x'
               | otherwise = if p == 2 then f 5 y x else y
               where (x', r) = divMod x p
    -- Reinhard Zumkeller, Nov 19 2015
    
  • Maple
    A132741 := proc(n) local f,a; f := ifactors(n)[2] ; a := 1; for f in ifactors(n)[2] do if op(1,f) =2 then a := a*2^op(2,f) ; elif op(1,f) =5 then a := a*5^op(2,f) ; end if; end do;a; end proc: # R. J. Mathar, Sep 06 2011
  • Mathematica
    a[n_] := SelectFirst[Reverse[Divisors[n]], MatchQ[FactorInteger[#], {{1, 1}} | {{2, }} | {{5, }} | {{2, }, {5, }}]&]; Array[a, 100] (* Jean-François Alcover, Feb 02 2018 *)
    a[n_] := Times @@ ({2, 5}^IntegerExponent[n, {2, 5}]); Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    A132741(n)=5^valuation(n,5)<M. F. Hasler, Dec 28 2015

Formula

a(n) = n / A132740(n).
a(A003592(n)) = A003592(n).
A051626(a(n)) = 0.
A007732(a(n)) = 1.
From R. J. Mathar, Sep 06 2011: (Start)
Multiplicative with a(2^e)=2^e, a(5^e)=5^e and a(p^e)=1 for p=3 or p>=7.
Dirichlet g.f. zeta(s)*(2^s-1)*(5^s-1)/((2^s-2)*(5^s-5)). (End)
a(n) = A006519(n)*A060904(n) = 2^A007814(n)*5^A112765(n). - M. F. Hasler, Dec 28 2015
Sum_{k=1..n} a(k) ~ n*(12*log(n)^2 + (24*gamma + 36*log(2) - 24)*log(n) + 24 - 24*gamma - 36*log(2) + 36*gamma*log(2) + 2*log(2)^2 - 18*log(5) + 18*gamma*log(5) + 27*log(2)*log(5) + 2*log(5)^2 + 18*log(5)*log(n) - 24*gamma_1)/(60*log(2)*log(5)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Jan 26 2023

A107466 Numbers of the form (5^i)*(13^j).

Original entry on oeis.org

1, 5, 13, 25, 65, 125, 169, 325, 625, 845, 1625, 2197, 3125, 4225, 8125, 10985, 15625, 21125, 28561, 40625, 54925, 78125, 105625, 142805, 203125, 274625, 371293, 390625, 528125, 714025, 1015625, 1373125, 1856465, 1953125, 2640625
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), May 27 2005

Keywords

Crossrefs

Programs

  • Mathematica
    mx = 2700000; Sort@ Flatten@ Table[5^i*13^j, {i, 0, Log[5, mx]}, {j, 0, Log[13, mx/5^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=5));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A107466(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,5)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (5*13)/((5-1)*(13-1)) = 65/48. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(5)*log(13)*n)) / sqrt(65). - Vaclav Kotesovec, Sep 23 2020

A114522 Numbers n such that sum of distinct prime divisors of n is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 29, 31, 32, 34, 36, 37, 40, 41, 43, 44, 47, 48, 49, 50, 53, 54, 58, 59, 61, 64, 67, 68, 71, 72, 73, 79, 80, 81, 82, 83, 88, 89, 96, 97, 100, 101, 103, 107, 108, 109, 113, 116, 118, 121, 125, 127
Offset: 1

Views

Author

Leroy Quet, Dec 05 2005

Keywords

Comments

Sequence is the union of the primes and sequence A047820.

Examples

			24 = 2^3 * 3 and 2 + 3 = 5, which is prime. So 24 is included.
		

Crossrefs

Programs

  • Magma
    [k:k in [2..150]| IsPrime(&+PrimeDivisors(k))]; // Marius A. Burtea, Oct 06 2019
  • Mathematica
    f[n_] := Plus @@ First /@ FactorInteger[n]; Select[Range[130], PrimeQ[f[ # ]] &] (* Ray Chandler, Dec 07 2005 *)
    Select[Range@127, PrimeQ[Plus @@ First /@ FactorInteger@# ] &] (* Robert G. Wilson v, Dec 07 2005 *)
  • PARI
    for(n=1, 200, v=factor(n); s=0; for(i=1,matsize(v)[1],s+=v[i,1]); if(isprime(s), print1(n, ", "))) \\ Lambert Herrgesell (zero815(AT)googlemail.com), Dec 07 2005
    

Extensions

Extended by Robert G. Wilson v, Ray Chandler and Lambert Herrgesell (zero815(AT)googlemail.com), Dec 07 2005

A108056 Numbers of the form (7^i)*(13^j).

Original entry on oeis.org

1, 7, 13, 49, 91, 169, 343, 637, 1183, 2197, 2401, 4459, 8281, 15379, 16807, 28561, 31213, 57967, 107653, 117649, 199927, 218491, 371293, 405769, 753571, 823543, 1399489, 1529437, 2599051, 2840383, 4826809, 5274997, 5764801, 9796423, 10706059, 18193357, 19882681
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 02 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^7; Flatten[Table[7^i*13^j, {i, 0, Log[7, n]}, {j, 0, Log[13, n/7^i]}]] // Sort (* Amiram Eldar, Sep 23 2020 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=7));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A108056(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,7)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

Sum_{n>=1} 1/a(n) = (7*13)/((7-1)*(13-1)) = 91/72. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(7)*log(13)*n)) / sqrt(91). - Vaclav Kotesovec, Sep 23 2020

Extensions

More terms from Amiram Eldar, Sep 23 2020

A352153 Smallest digit in the decimal expansion of 1/n, ignoring leading and trailing 0's.

Original entry on oeis.org

1, 5, 3, 2, 2, 1, 1, 1, 1, 1, 0, 3, 0, 1, 6, 2, 0, 5, 0, 5, 0, 4, 0, 1, 4, 1, 0, 1, 0, 3, 0, 1, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Leading 0's are not considered, otherwise a(n) would be 0 when n >= 11 (see examples for 13 and 14).
Trailing 0's are not also considered, otherwise when 1/n is a terminating decimal (A003592), a(n) would be also 0.

Examples

			1/13 = 0.076923076923076923... with periodic part = '769230' (or '076923'), hence a(13) = 0.
1/14 = 0.0714285714285714285... with periodic part = '714285', hence a(14) = 1.
1/40 = 0.025 hence a(40) = 2.
		

Crossrefs

Cf. A003592, A333236 (largest digit).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Array[Min@ f@# &, 105]

Formula

a(n) = n iff n = 1 or n = 3.
a(10*n) = a(n).
a(10^n) = 1.

A352155 Numbers m such that the smallest digit in the decimal expansion of 1/m is 1, ignoring leading and trailing 0's.

Original entry on oeis.org

1, 6, 7, 8, 9, 10, 14, 24, 26, 28, 32, 35, 54, 55, 56, 60, 64, 65, 66, 70, 72, 74, 75, 80, 82, 88, 90, 100, 104, 112, 128, 140, 175, 176, 224, 240, 260, 280, 320, 350, 432, 448, 468, 504, 512, 528, 540, 548, 550, 560, 572, 576, 584, 592, 600, 616, 625, 640, 650, 660
Offset: 1

Views

Author

Keywords

Comments

Leading 0's are not considered, otherwise every integer >= 11 would be a term (see examples).
Trailing 0's are also not considered, otherwise numbers of the form 2^i*5^j with i, j >= 0, apart from 1 (A003592) would be terms.
If k is a term, 10*k is also a term; so, terms with no trailing zeros are all primitive terms.
{8, 88, 888, ...} = A002282 \ {0} is a subsequence.

Examples

			m = 14 is a term since 1/14 = 0.0714285714285714285... and the smallest term after the leading 0 is 1.
m = 240 is a term since 1/240 = 0.00416666666... and the smallest term after the leading 0's is 1.
m = 888 is a term since 1/888 = 0.001126126126... and the smallest term after the leading 0's is 1.
		

Crossrefs

Similar with smallest digit k: A352154 (k=0), this sequence (k=1), A352156 (k=2), A352157 (k=3), A352158 (k=4), A352159 (k=5), A352160 (k=6), A352153 (no known term for k=7), A352161 (k=8), no term (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 1100, Min@ f@# == 1 &]
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A352155_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            m2, m5 = multiplicity(2,n), multiplicity(5,n)
            k, m = 10**max(m2,m5), 10**(t := n_order(10,n//2**m2//5**m5))-1
            c = k//n
            s = str(m*k//n-c*m).zfill(t)
            if s == '0' and min(str(c)) == '1':
                yield n
            elif '0' not in s and min(str(c).lstrip('0')+s) == '1':
                    yield n
    A352155_list = list(islice(A352155_gen(),20)) # Chai Wah Wu, Mar 28 2022

Formula

A352153(a(n)) = 1.

A352156 Numbers m such that the smallest digit in the decimal expansion of 1/m is 2, ignoring leading and trailing 0's.

Original entry on oeis.org

4, 5, 16, 36, 40, 44, 45, 50, 108, 160, 216, 252, 288, 292, 308, 360, 364, 375, 396, 400, 404, 440, 444, 450, 500, 1024, 1080, 1375, 1600, 2072, 2160, 2368, 2520, 2880, 2920, 3080, 3125, 3375, 3600, 3640, 3750, 3848, 3960, 4000, 4040, 4125, 4224, 4368, 4400, 4440, 4500, 5000
Offset: 1

Views

Author

Keywords

Comments

Leading 0's are not considered, otherwise every integer >= 11 would be a term (see examples).
Trailing 0's are also not considered, otherwise numbers of the form 2^i*5^j with i, j >= 0, apart from 1 (A003592) would be terms.
If k is a term, 10*k is also a term; so, terms with no trailing zeros are all primitive terms.

Examples

			m = 16 is a term since 1/16 = 0.0625 and the smallest term after the leading 0 is 2.
m = 216 is a term since 1/216 = 0.004629629629... and the smallest term after the leading 0's is 2.
m = 4444 is not a term since 1/4444 = 0.00022502250225... and the smallest term after the leading 0's is 0.
		

Crossrefs

Cf. A341383.
Subsequences: A093141 \ {1}, A093143 \ {1}.
Similar with smallest digit k: A352154 (k=0), A352155 (k=1), this sequence (k=2), A352157 (k=3), A352158 (k=4), A352159 (k=5), A352160 (k=6), A352153 (no known term for k=7), A352161 (k=8), no term (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 1100, Min@ f@# == 2 &]
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A352156_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            m2, m5 = multiplicity(2,n), multiplicity(5,n)
            k, m = 10**max(m2,m5), 10**(t := n_order(10,n//2**m2//5**m5))-1
            c = k//n
            s = str(m*k//n-c*m).zfill(t)
            if s == '0' and min(str(c)) == '2':
                yield n
            elif '0' not in s and min(str(c).lstrip('0')+s) == '2':
                    yield n
    A352156_list = list(islice(A352156_gen(),20)) # Chai Wah Wu, Mar 28 2022

Formula

A352153(a(n)) = 2.
Previous Showing 21-30 of 107 results. Next