cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A108090 Numbers of the form (11^i)*(13^j).

Original entry on oeis.org

1, 11, 13, 121, 143, 169, 1331, 1573, 1859, 2197, 14641, 17303, 20449, 24167, 28561, 161051, 190333, 224939, 265837, 314171, 371293, 1771561, 2093663, 2474329, 2924207, 3455881, 4084223, 4826809, 19487171, 23030293, 27217619
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 03 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108090 n = a108090_list !! (n-1)
    a108090_list = f $ singleton (1,0,0) where
       f s = y : f (insert (11 * y, i + 1, j) $ insert (13 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Magma
    [n: n in [1..10^7] | PrimeDivisors(n) subset [11, 13]]; // Vincenzo Librandi, Jun 27 2016
    
  • Mathematica
    mx = 3*10^7; Sort@ Flatten@ Table[ 11^i*13^j, {i, 0, Log[11, mx]}, {j, 0, Log[13, mx/11^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
    fQ[n_]:=PowerMod[143, n, n] == 0; Select[Range[2 10^7], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
  • PARI
    list(lim)=my(v=List(),t); for(j=0,logint(lim\=1,13), t=13^j; while(t<=lim, listput(v,t); t*=11)); Set(v) \\ Charles R Greathouse IV, Aug 29 2016
    
  • Python
    from sympy import integer_log
    def A108090(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,11)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (11*13)/((11-1)*(13-1)) = 143/120. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(11)*log(13)*n)) / sqrt(143). - Vaclav Kotesovec, Sep 23 2020

A107364 Numbers of the form (3^i)*(13^j).

Original entry on oeis.org

1, 3, 9, 13, 27, 39, 81, 117, 169, 243, 351, 507, 729, 1053, 1521, 2187, 2197, 3159, 4563, 6561, 6591, 9477, 13689, 19683, 19773, 28431, 28561, 41067, 59049, 59319, 85293, 85683, 123201, 177147, 177957, 255879, 257049, 369603, 371293, 531441
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), May 23 2005

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10^7] | PrimeDivisors(n) subset [3, 13]]; // Vincenzo Librandi, Jun 27 2016
  • Mathematica
    mx = 540000; Sort@ Flatten@ Table[3^i*13^j, {i, 0, Log[3, mx]}, {j, 0, Log[13, mx/3^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
    fQ[n_]:=PowerMod[39, n, n] == 0; Select[Range[2 10^7], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    

Formula

Sum_{n>=1} 1/a(n) = (3*13)/((3-1)*(13-1)) = 13/8. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(3)*log(13)*n)) / sqrt(39). - Vaclav Kotesovec, Sep 23 2020

A107466 Numbers of the form (5^i)*(13^j).

Original entry on oeis.org

1, 5, 13, 25, 65, 125, 169, 325, 625, 845, 1625, 2197, 3125, 4225, 8125, 10985, 15625, 21125, 28561, 40625, 54925, 78125, 105625, 142805, 203125, 274625, 371293, 390625, 528125, 714025, 1015625, 1373125, 1856465, 1953125, 2640625
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), May 27 2005

Keywords

Crossrefs

Programs

  • Mathematica
    mx = 2700000; Sort@ Flatten@ Table[5^i*13^j, {i, 0, Log[5, mx]}, {j, 0, Log[13, mx/5^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=5));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A107466(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,5)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (5*13)/((5-1)*(13-1)) = 65/48. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(5)*log(13)*n)) / sqrt(65). - Vaclav Kotesovec, Sep 23 2020

A108761 Numbers of the form (10^i)*(13^j), with i, j >= 0.

Original entry on oeis.org

1, 10, 13, 100, 130, 169, 1000, 1300, 1690, 2197, 10000, 13000, 16900, 21970, 28561, 100000, 130000, 169000, 219700, 285610, 371293, 1000000, 1300000, 1690000, 2197000, 2856100, 3712930, 4826809, 10000000, 13000000, 16900000
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 24 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108761 n = a108761_list !! (n-1)
    a108761_list = f $ singleton (1,0,0) where
       f s = y : f (insert (10 * y, i + 1, j) $ insert (13 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    n = 10^7; Flatten[Table[10^i*13^j, {i, 0, Log10[n]}, {j, 0, Log[13, n/10^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (10*13)/((10-1)*(13-1)) = 65/54. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(10)*log(13)*n)) / sqrt(130). - Vaclav Kotesovec, Sep 25 2020

A108056 Numbers of the form (7^i)*(13^j).

Original entry on oeis.org

1, 7, 13, 49, 91, 169, 343, 637, 1183, 2197, 2401, 4459, 8281, 15379, 16807, 28561, 31213, 57967, 107653, 117649, 199927, 218491, 371293, 405769, 753571, 823543, 1399489, 1529437, 2599051, 2840383, 4826809, 5274997, 5764801, 9796423, 10706059, 18193357, 19882681
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 02 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^7; Flatten[Table[7^i*13^j, {i, 0, Log[7, n]}, {j, 0, Log[13, n/7^i]}]] // Sort (* Amiram Eldar, Sep 23 2020 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=7));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A108056(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//13**i,7)[0]+1 for i in range(integer_log(x,13)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

Sum_{n>=1} 1/a(n) = (7*13)/((7-1)*(13-1)) = 91/72. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(7)*log(13)*n)) / sqrt(91). - Vaclav Kotesovec, Sep 23 2020

Extensions

More terms from Amiram Eldar, Sep 23 2020

A107462 Numbers of the form (4^i)*(13^j), with i, j >= 0.

Original entry on oeis.org

1, 4, 13, 16, 52, 64, 169, 208, 256, 676, 832, 1024, 2197, 2704, 3328, 4096, 8788, 10816, 13312, 16384, 28561, 35152, 43264, 53248, 65536, 114244, 140608, 173056, 212992, 262144, 371293, 456976, 562432, 692224, 851968, 1048576, 1485172
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 09 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[4^i*13^j, {i, 0, Log[4, n]}, {j, 0, Log[13, n/4^i]}]] // Sort (* Amiram Eldar, Sep 24 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (4*13)/((4-1)*(13-1)) = 13/9. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(4)*log(13)*n)) / sqrt(52). - Vaclav Kotesovec, Sep 24 2020

A107710 Numbers of the form (6^i)*(13^j), with i, j >= 0.

Original entry on oeis.org

1, 6, 13, 36, 78, 169, 216, 468, 1014, 1296, 2197, 2808, 6084, 7776, 13182, 16848, 28561, 36504, 46656, 79092, 101088, 171366, 219024, 279936, 371293, 474552, 606528, 1028196, 1314144, 1679616, 2227758, 2847312, 3639168, 4826809, 6169176
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 10 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*13^j, {i, 0, Log[6, n]}, {j, 0, Log[13, n/6^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*13)/((6-1)*(13-1)) = 13/10. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(6)*log(13)*n)) / sqrt(78). - Vaclav Kotesovec, Sep 25 2020

A107764 Numbers of the form (8^i)*(13^j), with i, j >= 0.

Original entry on oeis.org

1, 8, 13, 64, 104, 169, 512, 832, 1352, 2197, 4096, 6656, 10816, 17576, 28561, 32768, 53248, 86528, 140608, 228488, 262144, 371293, 425984, 692224, 1124864, 1827904, 2097152, 2970344, 3407872, 4826809, 5537792, 8998912, 14623232, 16777216
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[8^i*13^j, {i, 0, Log[8, n]}, {j, 0, Log[13, n/8^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (8*13)/((8-1)*(13-1)) = 26/21. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(8)*log(13)*n)) / sqrt(104). - Vaclav Kotesovec, Sep 25 2020

A288162 Numbers whose prime factors are 2 and 13.

Original entry on oeis.org

26, 52, 104, 208, 338, 416, 676, 832, 1352, 1664, 2704, 3328, 4394, 5408, 6656, 8788, 10816, 13312, 17576, 21632, 26624, 35152, 43264, 53248, 57122, 70304, 86528, 106496, 114244, 140608, 173056, 212992, 228488, 281216, 346112, 425984, 456976, 562432, 692224, 742586, 851968, 913952
Offset: 1

Views

Author

Bernard Schott, Jun 06 2017

Keywords

Comments

Numbers k such that phi(k)/k = 6/13.

Crossrefs

Programs

  • Magma
    [n:n in [1..100000] | Set(PrimeDivisors(n)) eq {2,13}];  // Marius A. Burtea, May 10 2019
  • Mathematica
    Select[Range[920000],FactorInteger[#][[All,1]]=={2,13}&] (* Harvey P. Dale, Jun 18 2021 *)
  • PARI
    is(n) = factor(n)[, 1]~==[2, 13] \\ Felix Fröhlich, Jun 06 2017
    
  • PARI
    list(lim)=my(v=List(),t); for(n=1,logint(lim\2,13), t=13^n; while((t<<=1)<=lim, listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jun 11 2017
    

Formula

a(n) = 26 * A107326(n). - David A. Corneth, Jun 06 2017
Sum_{n>=1} 1/a(n) = 1/12. - Amiram Eldar, Dec 22 2020

A108748 Numbers of the form (9^i)*(13^j), with i, j >= 0.

Original entry on oeis.org

1, 9, 13, 81, 117, 169, 729, 1053, 1521, 2197, 6561, 9477, 13689, 19773, 28561, 59049, 85293, 123201, 177957, 257049, 371293, 531441, 767637, 1108809, 1601613, 2313441, 3341637, 4782969, 4826809, 6908733, 9979281, 14414517, 20820969
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 23 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[9^i*13^j, {i, 0, Log[9, n]}, {j, 0, Log[13, n/9^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (9*13)/((9-1)*(13-1)) = 39/32. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(9)*log(13)*n)) / sqrt(117). - Vaclav Kotesovec, Sep 25 2020
Showing 1-10 of 12 results. Next