cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A369502 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2+x)^2 ).

Original entry on oeis.org

1, 6, 47, 420, 4059, 41316, 436345, 4737018, 52535950, 592667532, 6779699073, 78458218746, 916886214115, 10805128064100, 128260666769895, 1532180536574580, 18405744106135914, 222204347510440092, 2694506677864591810, 32804976554127379680, 400837173223351237295
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2+x)^2)/x)
    
  • PARI
    a(n) = sum(k=0, n, binomial(2*n+2, k)*binomial(4*n-2*k+4, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(2*n+2,k) * binomial(4*n-2*k+4,n-k).

A069725 Number of nonisomorphic unrooted unicursal planar maps with n edges and two vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

1, 1, 3, 11, 62, 342, 2152, 13768, 91800, 622616, 4301792, 30100448, 213019072, 1521473984, 10954616064, 79420280064, 579300888960, 4248201302400, 31302536066560, 231638727063040
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

There is an easy formula.

Crossrefs

Programs

  • Mathematica
    a[1] = a[2] = 1;
    a[n_] := With[{m = Floor[(n+1)/2]}, 1/n 2^(n-3) Binomial[2n-2, n-1] + 2^(m-3) Binomial[2m-2, m-1]];
    Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)

A069731 Number of unicursal planar maps with n edges rooted at a vertex of odd valency (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

1, 5, 28, 168, 1056, 6864, 45760, 311168, 2149888, 15049216, 106502144, 760729600, 5477253120, 39710085120, 289650032640, 2124100239360, 15651264921600, 115819360419840, 860372391690240
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Programs

  • Maple
    Z:=-(1-4*z-sqrt(1-4*z))/sqrt(1-4*z)/64: Zser:=series(Z, z=0, 32): seq(coeff(Zser*2^(n+1), z, n), n=3..24); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Table[2^(n-2) CatalanNumber[n+1], {n, 1, 19}] (* Jean-François Alcover, Aug 28 2019 *)

Formula

a(n) = 2^(n-2)*C_(n+1), where C_n stands for the Catalan numbers (A000108).
a(n) = A003645(n+2)/4.
D-finite with recurrence: 4*(2*n+1)*a(n-1) - (n+2)*a(n) = 0, a(1) = 1. - Georg Fischer, May 23 2021
From Peter Bala, Apr 29 2024: (Start)
a(n) = Sum_{k = 0..n} binomial(n, 2*k)*Catalan(k)*4^(n-k-1).
O.g.f.: A(x) = (1 - 4*x - 8*x^2 - sqrt(1 - 8*x))/(32*x^2).
A(x) = series reversion of x*c(-x)/(1 + 4*x), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108 and c(-x)/(1 + 4*x) is the g.f. of (-1)^n*A000346(n). (End)

A167432 Riordan array (c(2x)^2,xc(2x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 4, 1, 20, 6, 1, 112, 36, 8, 1, 672, 224, 56, 10, 1, 4224, 1440, 384, 80, 12, 1, 27456, 9504, 2640, 600, 108, 14, 1, 183040, 64064, 18304, 4400, 880, 140, 16, 1, 1244672, 439296, 128128, 32032, 6864, 1232, 176, 18, 1, 8599552, 3055104, 905216, 232960
Offset: 0

Views

Author

Paul Barry, Nov 03 2009

Keywords

Comments

Inverse of (1-4x+4x^2,x(1-2x)) (A167431). Row sums are A084076. First column is A003645.

Examples

			Triangle begins
1,
4, 1,
20, 6, 1,
112, 36, 8, 1,
672, 224, 56, 10, 1,
4224, 1440, 384, 80, 12, 1,
27456, 9504, 2640, 600, 108, 14, 1,
183040, 64064, 18304, 4400, 880, 140, 16, 1,
1244672, 439296, 128128, 32032, 6864, 1232, 176, 18, 1,
8599552, 3055104, 905216, 232960, 52416, 10192, 1664, 216, 20, 1,
60196864, 21498880, 6449664, 1697280, 396032, 81536, 14560, 2184, 260, 22, 1
The production matrix is
4, 1,
4, 2, 1,
8, 4, 2, 1,
16, 8, 4, 2, 1,
32, 16, 8, 4, 2, 1,
64, 32, 16, 8, 4, 2, 1,
128, 64, 32, 16, 8, 4, 2, 1,
256, 128, 64, 32, 16, 8, 4, 2, 1,
512, 256, 128, 64, 32, 16, 8, 4, 2, 1
When topped with the row (1,0,0,0...), this has inverse
1,
-4, 1,
4, -2, 1,
0, 0, -2, 1,
0, 0, 0, -2, 1,
0, 0, 0, 0, -2, 1,
0, 0, 0, 0, 0, -2, 1,
0, 0, 0, 0, 0, 0, -2, 1,
0, 0, 0, 0, 0, 0, 0, -2, 1,
0, 0, 0, 0, 0, 0, 0, 0, -2, 1
		

Formula

Number triangle T(n,k)=A054445(n,k)*2^(n-k).

A181282 a(n) is the number of associate Rota-Baxter words in one idempotent generator x and one idempotent operator P of degree n. Such words are Rota-Baxter words that begin and/or end with x, and P is applied n times in the word.

Original entry on oeis.org

1, 3, 12, 60, 336, 2016, 12672, 82368, 549120, 3734016, 25798656, 180590592, 1278025728, 9128755200, 65727037440, 476521021440, 3475800391680, 25489202872320, 187815179059200, 1389832325038080, 10324468700282880
Offset: 0

Views

Author

William Sit (wyscc(AT)sci.ccny.cuny.edu), Oct 11 2010

Keywords

Examples

			For n = 2, the a(2) = 12 associate Rota-Baxter words are: xP(xP(x)), xP(xP(x))x, P(xP(x))x, xP(P(x)x), xP(P(x)x)x, P(P(x)x)x, xP(xP(x)x), xP(xP(x)x)x, P(xP(x)x)x, xP(x)xP(x), xP(x)xP(x)x, P(x)xP(x)x.
		

Crossrefs

Programs

  • Magma
    [1] cat [3*2^(n-1)*Catalan(n): n in [1..40]]; // G. C. Greubel, Jan 04 2023
    
  • Mathematica
    CoefficientList[Series[(3-4x-3Sqrt[1-8x])/(8x), {x,0,40}], x]
    a[0] = 1; a[n_]:= 3*2^(n-1) CatalanNumber[n]; Table[a[n], {n,0,20}] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    a(n) = if(n==0, 1, 3*2^(n-1)*(binomial(2*n,n)/(n+1))); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    import math
    f = math.factorial
    def C(n,r): return f(n)/f(r)/f(n-r)
    def A181282(n): return 1 if n==0 else 3*2**(n-1)*(C(2*n,n)/(n+1)) # Indranil Ghosh, Mar 05 2017
    
  • SageMath
    [3*2^(n-1)*catalan_number(n) -int(n==0)/2 for n in range(41)] # G. C. Greubel, Jan 04 2023

Formula

a(n) = 3*2^(n-1)*A000108(n).
G.f.: (3 - 4*t - 3*sqrt(1-8*t))/(8*t).
(n+1)*a(n) = 4*(2*n-1)*a(n-1). - R. J. Mathar, Jul 24 2012
a(n) = (n+2) * A000257(n). - F. Chapoton, Feb 26 2024

A069732 Number of nonisomorphic unrooted unicursal planar maps with n edges and no vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

0, 0, 2, 7, 40, 239, 1549, 10396, 71467, 498598, 3520015, 25087426, 180249182, 1304148015, 9494015372, 69492950976, 511147940104, 3776180492129, 28007532925171, 208474866181148
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    A003645[n_] := 2^n CatalanNumber[n + 1];
    A069724[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(# - 2) Binomial[2 #, #], 0] &] + If[OddQ[n], 2^((n - 3)/2) Binomial[n - 1, (n - 1)/2], 2^((n - 6)/2) Binomial[n, n/2]];
    A069725[n_] := If[n <= 2, 1, With[{m = Floor[(n + 1)/2]}, 1/n 2^(n - 3) Binomial[2 n - 2, n - 1] + 2^(m - 3) Binomial[2 m - 2, m - 1]]];
    a[n_] := If[n == 1, 0, A069724[n] - A003645[n - 2] - A069725[n]];
    Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)

Formula

a(n) = A069724(n) - A003645(n) - A069725(n).

A101596 G.f.: c(2*x)^4, where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 8, 56, 384, 2640, 18304, 128128, 905216, 6449664, 46305280, 334721024, 2434334720, 17801072640, 130809692160, 965500108800, 7154863964160, 53214300733440, 397094950010880, 2972195534929920, 22308469918924800
Offset: 0

Views

Author

Paul Barry, Dec 08 2004

Keywords

Comments

a(n) is also the number of paths in a binary tree of length 2n+3 between two vertices that are 3 steps apart. - David Koslicki, (koslicki(AT)math.psu.edu), Nov 02 2010

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-8z]+4z(-2+Sqrt[1-8z]+2z))/(32z^4), {z, 0, 20}],z] (* Benedict W. J. Irwin, Jul 12 2016 *)
  • PARI
    x='x+O('x^50); Vec((1-sqrt(1-8*x) + 4*x*(2*x-2+ sqrt(1-8*x)) )/(32*x^4)) \\ G. C. Greubel, May 24 2017

Formula

a(n) = ((8*n+12)/(3*n+12))*((3*n+3)/(n+3))*2^n*C(n+1), where C(n) and the Catalan numbers of A000108.
Conjecture: (n+4)*a(n)-4*(3n+7)*a(n-1)+16*(2n+1)*a(n-2)=0. - R. J. Mathar, Dec 13 2011
From Benedict W. J. Irwin, Jul 12 2016: (Start)
G.f.: (1-sqrt(1-8*x)+4*x*(2*x-2+sqrt(1-8*x)))/(32*x^4).
E.g.f: E^(4*x)*(2*x*(4*x-3)*BesselI(0,4*x) + (3-4*x+ 8*x^2)* BesselI(1, 4*x))/(4*x^3). (End)
a(n) ~ 2^(3*n+5)*n^(-3/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016

A123382 Triangle T(n,k), 0 <= k <= n, defined by : T(n,k) = 0 if k < 0, T(0,k) = 0^k, (n+2)*(2*n-2*k+1)*T(n,k) = (2*n+1)*( 4*(2*n-2*k+1)*T(n-1,k-1) + (n+2*k+2)*T(n-1,k) ).

Original entry on oeis.org

1, 1, 4, 1, 15, 20, 1, 35, 168, 112, 1, 66, 714, 1680, 672, 1, 110, 2178, 11352, 15840, 4224, 1, 169, 5434, 51051, 156156, 144144, 27456, 1, 245, 11830, 178035, 972400, 1953952, 1281280, 183040, 1, 340, 23324, 520676, 4516798, 16102944, 22870848, 11202048, 1244672, 1, 456, 42636, 1337220, 17073134
Offset: 0

Views

Author

Philippe Deléham, Oct 13 2006

Keywords

Comments

G. Kreweras explains that since the rows of A140136 are symmetric, they can be considered as linear combinations of the odd-indexed rows of the Pascal triangle. For instance, (1,1) = 1*(1,1) and (1,7,7,1) = 1*(1,3,3,1) + 4*(0,1,1,0) and (1,20,75,75,10,1) = 1*(1,5,10,10,5,1) + 15*(0,1,3,3,1) + 20*(0,0,1,1,0,0). These coefficients (1; 1, 4; 1, 15, 20;) are the rows of this triangle. - Michel Marcus, Nov 17 2014

Examples

			Triangle begins:
0: 1;
1: 1, 4;
2: 1, 15, 20;
3: 1, 35, 168, 112;
4: 1, 66, 714, 1680, 672;
5: 1, 110, 2178, 11352, 15840, 4224;
6: 1, 169, 5434, 51051, 156156, 144144, 27456;
7: 1, 245, 11830, 178035, 972400, 1953952, 1281280, 183040;
8: 1, 340, 23324, 520676, 4516798, 16102944, 22870848, 11202048, 1244672;
.....
		

Programs

  • Mathematica
    T[0, 0] := 1; T[0, k_] := 0; T[n_, k_] := T[n, k] = (2*n + 1)*(4*(2*n - 2*k + 1)*T[n - 1, k - 1] + (n + 2*k + 2)*T[n - 1, k])/((n + 2)*(2*n - 2*k + 1)); Table[If[k < 0, 0, T[n, k]], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 13 2017 *)
  • Sage
    @CachedFunction
    def T(n,k):
        if k < 0: return 0
        if n < 0: return 0
        if n == 0: return int( k==0 )
        if k == 0: return 1
        return ( (2*n+1)*( 4*(2*n-2*k+1)*T(n-1,k-1) + (n+2*k+2)*T(n-1,k) ) ) / ((n+2)*(2*n-2*k+1))
    for n in [0..16]:
        print([T(n,k) for k in range(0,n+1)])
    # Joerg Arndt, Nov 21 2014

Formula

T(n,n) = A003645(n).

Extensions

Corrected name, added more terms, Joerg Arndt, Nov 21 2014

A369505 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3+x)^2 ).

Original entry on oeis.org

1, 8, 86, 1066, 14361, 204314, 3020745, 45955442, 714723588, 11312450432, 181625888244, 2950848879096, 48423670556100, 801454908292020, 13363137183238881, 224253208102065664, 3784736105491395780, 64197997357038408976, 1093863031541592651003
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3+x)^2)/x)
    
  • PARI
    a(n) = sum(k=0, n, binomial(2*n+2, k)*binomial(6*n-3*k+6, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(2*n+2,k) * binomial(6*n-3*k+6,n-k).

A134183 A Hankel transform of a Catalan product.

Original entry on oeis.org

0, 1, 16, 768, 131072, 83886080, 206158430208, 1970324836974592, 73786976294838206464, 10880332376531662572355584, 6338253001141147007483516026880
Offset: 0

Views

Author

Paul Barry, Oct 11 2007

Keywords

Comments

-a(n) is the Hankel transform of A000108(n)*(2^n + 0^n)/2 = A003645(n-1). The Hankel transform of A003645(n) is 4^binomial(n+1, 2).

Formula

a(n) = 4^binomial(n,2)*n*2^(n-1);
a(n) = A053763(n)*A001787(n).
Previous Showing 11-20 of 20 results.