cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A003246 Discriminants of real quadratic norm-Euclidean fields (a finite sequence).

Original entry on oeis.org

5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 57, 73, 76
Offset: 1

Views

Author

Keywords

Comments

Euclidean fields that are not norm-Euclidean, such as Q(sqrt(14)) and Q(sqrt(69)), are not included. Actually, assuming GCH, a real quadratic field is Euclidean if and only if it is a PID (equivalently, if and only if it is a UFD). - Jianing Song, Jun 09 2022

References

  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 2, p. 57.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 294.

Crossrefs

Programs

Formula

Equals A037449(A003174) as a set, not composition of functions (values are sorted by size; it turns out that a(n) is different from A037449(A003174(n)) for all n=1,...,16). - M. F. Hasler, Jan 26 2014

A052475 Discriminants of real quadratic number fields with class number 2 such that Hilbert class field has splitting field Q(sqrt(5)).

Original entry on oeis.org

40, 60, 65, 85, 105, 120, 140, 165, 185, 205, 220, 265, 280, 285, 305, 345, 365, 380, 385, 440, 460, 465, 485, 545, 565, 620, 645, 665, 685, 705, 745, 760, 805, 860, 865, 885, 920, 965, 1005, 1065, 1085, 1165, 1180, 1185, 1205, 1240, 1245, 1265, 1285
Offset: 1

Views

Author

N. J. A. Sloane, Mar 15 2000

Keywords

References

  • H. Cohen, Advanced Topics in Computational Number Theory, Springer, 2000, pp. 534-535.

Crossrefs

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 15 2002

A094613 Fundamental discriminants of real quadratic number fields with class number 4.

Original entry on oeis.org

145, 328, 445, 505, 520, 680, 689, 777, 780, 793, 840, 876, 897, 901, 905, 924, 1020, 1045, 1096, 1105, 1145, 1160, 1164, 1221, 1288, 1292, 1313, 1320, 1365, 1480, 1560, 1640, 1677, 1736, 1740, 1745, 1752, 1820, 1848, 1885, 1932, 2005, 2040, 2056, 2120, 2145
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2145], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 4 &] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    {ok(n) = n>10 && isfundamental(n) && qfbclassno(n)==4};
    for(n=1, 2500, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
    
  • Sage
    is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 4;
    A094613 = lambda n: filter(is_fund_and_qfbcn_1, (1, 2, .., n));
    A094613(2500) # G. C. Greubel, Mar 01 2019

A342368 Fundamental discriminants of real quadratic number fields with odd class number > 1.

Original entry on oeis.org

229, 257, 316, 321, 401, 469, 473, 568, 577, 733, 761, 817, 892, 993, 1009, 1016, 1093, 1101, 1129, 1229, 1257, 1297, 1304, 1373, 1393, 1429, 1436, 1489, 1509, 1601, 1641, 1756, 1761, 1772, 1897, 1901, 1929, 1957, 1996, 2021, 2029, 2081, 2089, 2101, 2153, 2177, 2213
Offset: 1

Views

Author

Jianing Song, Mar 09 2021

Keywords

Comments

For a positive fundamental discriminant d, the class number of the real quadratic field of discriminant d is odd if and only if d = 8 or is of one of the three following forms: (i) p, where p is a prime congruent to 1 modulo 4; (ii) 4p or 8p, where p is a prime congruent to 3 modulo 4; (iii) pq, where p, q are distinct primes congruent to 3 modulo 4. See Theorem 1 and Theorem 2 of Ezra Brown's link. A003656 gives the case where the class number is 1.

Examples

			The class number of the quadratic field with discriminant 229 (namely Q(sqrt(229))) is 3, so 229 is a term.
The class number of the quadratic field with discriminant 1756 (namely Q(sqrt(439))) is 5, so 1756 is a term.
		

Crossrefs

Cf. A003656.

Programs

  • PARI
    isA342368(D) = if((D>1) && isfundamental(D), my(h=quadclassunit(D)[1]); (h%2)&&(h>1), 0)

A003655 Discriminants of real quadratic fields with narrow class number 1.

Original entry on oeis.org

5, 8, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 233, 241, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 593, 601, 613, 617, 641, 653, 661, 673
Offset: 1

Views

Author

Keywords

Comments

Or, positive fundamental discriminants with form class number 1.
All terms except 8 are primes congruent to 1 modulo 4. - Jianing Song, Jul 20 2022

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals {8} U (A003656 intersect A002144).
Equals A003656 \ A327297.

Programs

  • PARI
    isA003655(n) = (n==8) || (isprime(n) && (n%4==1) && (qfbclassno(n)==1)) \\ Jianing Song, Jul 20 2022

Extensions

Better definition from David Brink, Dec 30 2007, Jan 01 2008

A218157 Fundamental discriminants of real quadratic number fields with class number 7.

Original entry on oeis.org

577, 1009, 1601, 1761, 2029, 2913, 4229, 4348, 5176, 5273, 5417, 7736, 8097, 8661, 8773, 9004, 9029, 9049, 9101, 9208, 9289, 9868, 10117, 10313, 10357, 10713, 10957, 11021, 11053, 11269, 11537, 11621, 12497, 12977, 13049, 13313, 13701, 14201, 15277, 15809
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[15809], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 7 &]

A218158 Fundamental discriminants of real quadratic number fields with class number 8.

Original entry on oeis.org

904, 1596, 1705, 1768, 1785, 2584, 2605, 2705, 3081, 3196, 3201, 3480, 3640, 3976, 4092, 4161, 4305, 4488, 4620, 4669, 4956, 5160, 5196, 5249, 5305, 5404, 5513, 5713, 5772, 5784, 5865, 6360, 6409, 6565, 6757, 6953, 6972, 7449, 7585, 7656, 7788, 7833, 7980, 8005
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[8005], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 8 &]

A218159 Fundamental discriminants of real quadratic number fields with class number 9.

Original entry on oeis.org

1129, 3137, 4409, 5521, 6616, 6809, 7573, 7873, 10273, 10721, 11641, 12409, 12657, 13069, 14876, 15629, 16321, 17273, 17989, 18136, 18633, 19441, 21781, 22492, 22497, 23512, 24029, 24169, 24697, 24781, 25361, 26573, 27221, 27349, 28901, 29317, 31897
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[31897], NumberFieldDiscriminant@Sqrt[#] == # && NumberFieldClassNumber@Sqrt[#] == 9 &]

A349649 Discriminants of real quadratic fields whose fundamental unit has norm 1.

Original entry on oeis.org

12, 21, 24, 28, 33, 44, 56, 57, 60, 69, 76, 77, 88, 92, 93, 105, 120, 124, 129, 133, 136, 140, 141, 152, 156, 161, 165, 168, 172, 177, 184, 188, 201, 204, 205, 209, 213, 217, 220, 221, 236, 237, 248, 249, 253, 264, 268, 273, 280, 284, 285, 301, 305, 309, 312, 316
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 23 2021

Keywords

References

  • D. A. Buell, Binary Quadratic Forms, Springer-Verlag, NY, 1989, pp. 92-93.
  • Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 151.

Crossrefs

Cf. A003658, A003653 (discriminants of real quadratic fields whose fundamental unit has norm -1).
Cf. A003656, A327297 (a subsequence).

Programs

  • PARI
    isok(D) = isfundamental(D) && norm(quadunit(D))==1;

A350165 Fundamental discriminants of real quadratic number fields with odd class number > 1 whose fundamental unit has norm -1.

Original entry on oeis.org

229, 257, 401, 577, 733, 761, 1009, 1093, 1129, 1229, 1297, 1373, 1429, 1489, 1601, 1901, 2029, 2081, 2089, 2153, 2213, 2557, 2677, 2713, 2777, 2857, 2917, 3121, 3137, 3181, 3221, 3229, 3253, 3877, 3889, 4001, 4229, 4357, 4409, 4441, 4481, 4493, 4597, 4649, 4729, 4889, 4933
Offset: 1

Views

Author

Jianing Song, Dec 29 2021

Keywords

Comments

Prime terms of A342368.
For a positive fundamental discriminant d, the class number of the real quadratic field of discriminant d is odd if and only if d = 8 or is of one of the three following forms: (i) p, where p is a prime congruent to 1 modulo 4; (ii) 4p or 8p, where p is a prime congruent to 3 modulo 4; (iii) pq, where p, q are distinct primes congruent to 3 modulo 4. See Theorem 1 and Theorem 2 of Ezra Brown's link. This sequence gives values for d in the case (i) and that the real quadratic number field with discriminant d has odd class number > 1.

Examples

			229 is a term since the quadratic field with discriminant 229 (Q(sqrt(229))) has class number 5. The fundamental unit of that field ((15+sqrt(229))/2) has norm -1.
401 is a term since the quadratic field with discriminant 401 (Q(sqrt(401))) has class number 5. The fundamental unit of that field (20+sqrt(401)) has norm -1.
		

Crossrefs

Intersection of A342368 and A003653. Equals A342368 \ A349419.

Programs

  • PARI
    isA350165(D) = if(isprime(D) && isfundamental(D), my(h=quadclassunit(D)[1]); (h%2)&&(h>1), 0)
Previous Showing 11-20 of 27 results. Next