cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 107 results. Next

A381153 Decimal expansion of the isoperimetric quotient of a regular heptagon.

Original entry on oeis.org

9, 3, 1, 9, 4, 0, 6, 2, 3, 4, 9, 9, 0, 9, 5, 7, 4, 5, 9, 5, 2, 2, 2, 6, 3, 0, 0, 8, 9, 4, 2, 2, 7, 5, 4, 5, 7, 4, 5, 2, 8, 5, 2, 5, 1, 5, 4, 7, 1, 5, 3, 1, 5, 6, 1, 2, 7, 3, 2, 0, 2, 2, 6, 8, 8, 6, 4, 5, 2, 5, 3, 9, 4, 8, 0, 5, 4, 7, 8, 5, 6, 9, 3, 7, 7, 2, 8, 6, 7, 1
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.93194062349909574595222630089422754574528525154715...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381156 (11-gon), A381157 (12-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(7*Tan[Pi/7]), 10, 100]]

Formula

Equals Pi/(7*tan(Pi/7)) = Pi/(7*A343058).
Equals (4/49)*Pi*A178817.

A381154 Decimal expansion of the isoperimetric quotient of a regular 9-gon.

Original entry on oeis.org

9, 5, 9, 0, 5, 0, 5, 4, 1, 8, 7, 3, 6, 0, 9, 3, 5, 8, 0, 7, 4, 5, 4, 3, 3, 0, 6, 7, 0, 8, 6, 4, 3, 4, 1, 3, 0, 2, 0, 1, 8, 1, 5, 8, 0, 9, 7, 5, 2, 8, 5, 8, 7, 3, 4, 3, 7, 2, 0, 7, 8, 9, 2, 8, 0, 3, 9, 1, 9, 4, 5, 1, 0, 3, 7, 5, 6, 4, 9, 7, 6, 1, 4, 4, 0, 5, 7, 7, 1, 2
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.959050541873609358074543306708643413020181580975...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381155 (10-gon), A381156 (11-gon), A381157 (12-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(9*Tan[Pi/9]), 10, 100]]

Formula

Equals Pi/(9*tan(Pi/9)) = Pi/(9*A019918).
Equals (4/81)*Pi*A256853.

A381155 Decimal expansion of the isoperimetric quotient of a regular 10-gon.

Original entry on oeis.org

9, 6, 6, 8, 8, 2, 7, 9, 9, 0, 4, 6, 4, 0, 2, 5, 4, 0, 3, 2, 8, 1, 8, 3, 2, 1, 9, 1, 8, 2, 7, 5, 2, 9, 8, 8, 4, 6, 9, 8, 6, 8, 2, 4, 1, 0, 8, 4, 4, 0, 4, 2, 9, 1, 1, 0, 9, 9, 3, 6, 4, 1, 5, 1, 8, 4, 4, 7, 6, 9, 2, 9, 5, 1, 0, 1, 3, 1, 0, 2, 1, 4, 3, 7, 9, 2, 2, 0, 5, 5
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.96688279904640254032818321918275298846986824108440...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381156 (11-gon), A381157 (12-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(10*Tan[Pi/10]), 10, 100]]

Formula

Equals Pi/(10*tan(Pi/10)) = Pi/(10*A019916).
Equals (1/25)*Pi*A178816.

A381156 Decimal expansion of the isoperimetric quotient of a regular 11-gon.

Original entry on oeis.org

9, 7, 2, 6, 6, 2, 0, 0, 0, 9, 1, 9, 9, 0, 6, 8, 1, 9, 5, 3, 8, 2, 8, 8, 9, 7, 9, 3, 8, 5, 2, 6, 7, 6, 3, 1, 7, 1, 2, 9, 6, 5, 4, 1, 1, 1, 4, 2, 3, 4, 2, 8, 8, 2, 7, 3, 7, 9, 8, 9, 0, 4, 7, 0, 0, 5, 8, 7, 1, 2, 6, 7, 8, 3, 2, 5, 6, 9, 3, 0, 8, 0, 2, 3, 1, 7, 8, 7, 5, 0
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.97266200091990681953828897938526763171296541114234...
		

Crossrefs

Cf. A256854.
Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381157 (12-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(11*Tan[Pi/11]), 10, 100]]

Formula

Equals Pi/(11*tan(Pi/11)).
Equals (4/121)*Pi*A256854.

A381157 Decimal expansion of the isoperimetric quotient of a regular 12-gon.

Original entry on oeis.org

9, 7, 7, 0, 4, 8, 6, 1, 6, 6, 5, 6, 8, 5, 3, 3, 3, 5, 7, 2, 5, 6, 2, 6, 7, 9, 4, 9, 5, 7, 1, 2, 2, 7, 4, 7, 1, 0, 3, 8, 7, 8, 1, 2, 8, 5, 8, 5, 7, 0, 2, 7, 8, 0, 7, 2, 1, 6, 2, 8, 6, 6, 5, 8, 9, 8, 3, 3, 3, 5, 2, 9, 6, 6, 2, 6, 2, 3, 3, 0, 4, 0, 2, 5, 7, 0, 3, 7, 1, 7
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.97704861665685333572562679495712274710387812858570...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381156 (11-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(12*Tan[Pi/12]), 10, 100]]

Formula

Equals Pi/(12*tan(Pi/12)) = Pi/(12*A019913).
Equals (1/36)*Pi*A178809.

A096955 Denominators of rational approximation to Pi/4 from Machins's formula.

Original entry on oeis.org

1195, 1706489875, 12184551018734375, 24359780855939418203125, 104359128170408663038552734375, 1639301884061026141391921953564453125, 30432532948821209122295591520605416259765625
Offset: 0

Views

Author

Wolfdieter Lang, Jul 23 2004

Keywords

Comments

Machin's formula: Pi/4 = 4*arctan(1/5) - arctan(1/239).
Numerators are given in A096954.

Examples

			A096954(7)/a(7) =
170660807873601670198453967268421248219727522686104 /217292089321202035784330810406062747771759033203125
= 0.78539816339715...
		

References

  • W. Walter, Analysis I (in German), Springer, 3. Auflage, 1992; p. 216.

Crossrefs

Formula

a(n) = denominator(M(n)), with M(n)=4*arctan(1/5, n) - arctan(1/239, n) with arctan(x, n):=sum((((-1)^k)*x^(2k+1))/(2*k+1), k=0..n).

A136485 Number of unit square lattice cells enclosed by origin centered circle of diameter n.

Original entry on oeis.org

0, 0, 4, 4, 12, 16, 24, 32, 52, 60, 76, 88, 112, 120, 148, 164, 192, 216, 256, 276, 308, 332, 376, 392, 440, 476, 524, 556, 608, 648, 688, 732, 796, 832, 904, 936, 1012, 1052, 1124, 1176, 1232, 1288, 1372, 1428, 1508, 1560, 1648, 1696, 1788, 1860, 1952, 2016
Offset: 1

Views

Author

Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008

Keywords

Comments

a(n) is the number of complete squares that fit inside the circle with diameter n, drawn on squared paper.

Examples

			a(3) = 4 because a circle centered at the origin and of radius 3/2 encloses (-1,-1), (-1,1), (1,-1), (1,1).
		

Crossrefs

Alternating merge of A119677 of A136485.

Programs

  • Magma
    A136485:= func< n | n le 1 select 0 else 4*(&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >;
    [A136485(n): n in [1..100]]; // G. C. Greubel, Jul 29 2023
    
  • Mathematica
    Table[4*Sum[Floor[Sqrt[(n/2)^2 - k^2]], {k,Floor[n/2]}], {n,100}]
  • SageMath
    def A136485(n): return 4*sum(floor(sqrt((n/2)^2-k^2)) for k in range(1,(n//2)+1))
    [A136485(n) for n in range(1,101)] # G. C. Greubel, Jul 29 2023

Formula

a(n) = 4 * Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)).
a(n) = 4 * A136483(n).
a(n) = 2 * A136513(n).
Lim_{n -> oo} a(n)/(n^2) -> Pi/4 (A003881).
a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (1 - x). - Ilya Gutkovskiy, Nov 24 2021

A152584 Decimal expansion of (Pi^3)/24.

Original entry on oeis.org

1, 2, 9, 1, 9, 2, 8, 1, 9, 5, 0, 1, 2, 4, 9, 2, 5, 0, 7, 3, 1, 1, 5, 1, 3, 1, 2, 7, 7, 9, 5, 8, 9, 1, 4, 6, 6, 7, 5, 9, 3, 8, 7, 0, 2, 3, 5, 7, 8, 5, 4, 6, 1, 5, 3, 9, 2, 2, 6, 8, 9, 0, 8, 7, 6, 5, 8, 5, 9, 9, 7, 8, 8, 2, 2, 7, 7, 3, 7, 7, 5, 1, 5, 6, 5, 2, 7, 9, 2, 0, 9, 6, 9, 1, 7, 8, 6, 9, 2, 4, 7, 0, 9, 5, 8
Offset: 1

Views

Author

Eric Desbiaux, Dec 08 2008

Keywords

Comments

Consider infinite sum made of areas of circles Pi*radius^2 with diameter 1/n.
The volume is (Pi/4)*(1 + 1/4 + 1/9 + 1/16 + 1/25 + ... + 1/n^2)
= (1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ...)*(1 + 1/4 + 1/9 + 1/16 + 1/25 + ...)
= (Pi/4) * (Pi^2/6) = Pi^3/24.
Equals volume of a cone of height Pi^2/8 and radius 1.
Equals volume of a sphere (4*Pi*Pi^2/32)/3 with radius^3 = (Pi^2/32).

Examples

			1.291928195012492507311513127795891466759387023578...
		

Crossrefs

Programs

Formula

Equals Integral_{x=0..oo} arctan(x)^2/(x^2 + 1) dx. - Amiram Eldar, Aug 06 2020

A197758 Decimal expansion of least x>0 having sin(2x)=4*sin(8x).

Original entry on oeis.org

3, 7, 1, 4, 5, 8, 2, 9, 4, 0, 3, 3, 4, 8, 6, 3, 5, 2, 5, 0, 5, 8, 3, 2, 7, 2, 8, 5, 1, 9, 5, 1, 2, 4, 0, 9, 8, 0, 8, 9, 6, 8, 2, 6, 0, 7, 3, 9, 5, 7, 5, 3, 9, 0, 7, 2, 3, 4, 4, 5, 2, 9, 1, 0, 6, 3, 6, 6, 8, 0, 5, 8, 1, 2, 0, 6, 6, 9, 3, 6, 8, 8, 6, 9, 9, 1, 5, 1, 0, 5, 8, 9, 8, 3, 6, 8, 1, 2, 4
Offset: 0

Views

Author

Clark Kimberling, Oct 19 2011

Keywords

Comments

For a discussion and guide to related sequences, see A197739.

Examples

			x=0.37145829403348635250583272851951240980...
		

Crossrefs

Programs

  • Mathematica
    b = 1; c = 4;
    f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x];
    r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .37, .38}, WorkingPrecision -> 110]
    RealDigits[r]  (* A197758 *)
    m = s[r]
    RealDigits[m]  (* A197759 *)
    Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}]
    d = m/2; t = x /. FindRoot[s[x] == d, {x, 0.64, 0.65}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197760 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = m/3; t = x /. FindRoot[s[x] == d, {x, 0.72, 0.73}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197761 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1; t = x /. FindRoot[s[x] == d, {x, 0.6, 0.7}, WorkingPrecision -> 110]
    RealDigits[t]  (* A019692, pi/5 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1/2; t = x /. FindRoot[s[x] == d, {x, 0.6, 0.8}, WorkingPrecision -> 110]
    RealDigits[t]   (* A003881 *)
    Plot[{s[x], d}, {x, 0, 1}, AxesOrigin -> {0, 0}]
    RealDigits[ ArcTan[ Sqrt[ Root[17#^3 - 109#^2 + 115# - 15&, 1] ] ], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)

A281964 Real part of n!*Sum_{k=1..n} i^(k-1)/k, where i is sqrt(-1).

Original entry on oeis.org

1, 2, 4, 16, 104, 624, 3648, 29184, 302976, 3029760, 29698560, 356382720, 5111976960, 71567677440, 986336870400, 15781389926400, 289206418636800, 5205715535462400, 92506221468057600, 1850124429361152000, 41285515024760832000, 908281330544738304000
Offset: 1

Views

Author

Daniel Suteu, Feb 06 2017

Keywords

Examples

			For n=5, a(5) = 104, which is the real part of 5!*(1/1 + i/2 - 1/3 - i/4 + 1/5) = 104+30*i.
		

Crossrefs

The corresponding imaginary part is A282132.

Programs

  • PARI
    a(n) = real(n!*sum(k=1, n, I^(k-1)/k));
    
  • PARI
    first(n) = x='x+O('x^(n+1)); Vec(serlaplace(atan(x)/(1 - x))) \\ Iain Fox, Dec 19 2017

Formula

a(n) ~ Pi/4 * n!.
a(1) = 1, a(n+1) = a(n)*(n+1) + n!*cos(Pi*n/2).
E.g.f.: arctan(x)/(1 - x). - Ilya Gutkovskiy, Dec 19 2017
Previous Showing 51-60 of 107 results. Next